A249551 Numbers m such that there are precisely 8 groups of order m.
510, 690, 870, 910, 1122, 1190, 1330, 1395, 1410, 1590, 1610, 1770, 1914, 2002, 2210, 2346, 2470, 2490, 2590, 2618, 2670, 2706, 2745, 2926, 2958, 2990, 3094, 3102, 3210, 3230, 3290, 3390, 3458, 3465, 3498, 3710, 3770, 3894, 3910, 4002, 4110, 4130, 4182, 4186, 4370, 4470
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1064
- H. U. Besche, B. Eick and E. A. O'Brien, Numbers of isomorphism types of finite groups of given order
- Index entries for sequences related to groups
Crossrefs
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), this sequence (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Programs
-
GAP
A249551 := Filtered([1..2015], n -> NumberSmallGroups(n) = 8); # Muniru A Asiru, Oct 18 2017
-
Mathematica
Select[Range[10^4], FiniteGroupCount[#] == 8 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*) (* Robert Price, May 24 2019 *)
Extensions
a(15)-a(16) from Muniru A Asiru, Oct 18 2017
More terms from Michael De Vlieger, Oct 18 2017
Missing terms added by Andrey Zabolotskiy, Oct 27 2017