cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249565 Number of self-avoiding walks on the truncated square tiling with n steps.

Original entry on oeis.org

1, 3, 6, 12, 22, 42, 80, 152, 284, 536, 988, 1848, 3412, 6352, 11724, 21718, 39952, 73808, 135668, 250188, 459172, 844888, 1548608, 2845186, 5211548, 9563768, 17501272, 32079524, 58660712, 107425356, 196320596, 359232144, 656099656, 1199676412, 2189995764
Offset: 0

Views

Author

Mike Zabrocki, Nov 01 2014

Keywords

Comments

A self-avoiding walk is a sequence of adjacent points in a lattice that are all distinct. The truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. The edge lattice is also referred to as (4,8^2) lattice. It is also the Cayley graph of the Coxeter group generated by three generators {s_0, s_1, s_2} with the relations s_i^2 = 1, s_0 s_2 = s_2 s_0, (s_i s_{i+1})^4 = 1 for i=0,1.
It is conjectured that a(n) is approximately mu^n*n^{11/32} for large n where mu is the connective constant and mu is approximately 1.80883001(6).

Examples

			There are 6 paths of length 2 in the truncated square lattice corresponding to the reduced words in the Coxeter group s_0 s_2, s_0 s_1, s_1 s_2, s_1 s_0, s_2 s_0, s_2 s_1.
		

Crossrefs

Extensions

a(20)-a(21) from Mike Zabrocki, Nov 08 2014
a(19)-a(21) corrected based on Alm (2005) and Lin & Chang (2002), more terms added by Andrey Zabolotskiy, Oct 18 2024