cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225885 Square numbers that remain square when their most-significant (or leftmost) digit is removed.

Original entry on oeis.org

1, 4, 9, 49, 64, 81, 100, 225, 400, 625, 900, 1225, 2025, 3025, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 15625, 22500, 27225, 30625, 34225, 40000, 42025, 50625, 60025, 62500, 70225, 75625, 81225, 90000, 93025, 105625, 122500, 202500, 275625, 302500, 330625
Offset: 1

Views

Author

Keywords

Comments

The first three are the only terms not divisible by 25 (and thus, not ending in 00 or 25). If 100 is a term, then the sequence should start with 3 more initial terms, namely (1, 4, 9, ...) - M. F. Hasler, Nov 01 2014

Examples

			225 = 15^2 becomes 25 = 5^2, 105625 = 325^2 becomes 5625 = 75^2.
		

Crossrefs

Programs

  • Mathematica
    b^2 /. Flatten[Outer[Solve[a^2 + #2*10^#1 == b^2 && 0 <= a < Sqrt[10^#1] && Sqrt[#2*10^#1] <= b < Sqrt[10^(#1 + 1)], {a, b}, Integers] &, Range[0, 5], Range[9]], 2] (* Davin Park, Dec 30 2016 *)
  • PARI
    is_A225885(n)=issquare(n%10^(#Str(n)-1))&&issquare(n)&&n>9 \\ M. F. Hasler, Nov 01 2014
  • R
    no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s};
    issquare<-function(x) ifelse(as.bigz(x)<2,T,all(table(as.numeric(gmp::factorize(x)))%%2==0));
    which(sapply(1:200,function(x) issquare(no0(substr(x^2,2,ndig(x^2)))))>0)^2
    

Extensions

1,4,9 added (per M. F. Hasler's comment) by Chai Wah Wu, Nov 03 2014

A249853 Numbers whose cubes become squares if one of their digits is deleted.

Original entry on oeis.org

4, 5, 6, 10, 20, 21, 25, 40, 44, 64, 90, 100, 129, 160, 200, 250, 360, 400, 490, 500, 600, 640, 810, 1000, 1210, 1440, 1690, 1960, 2000, 2025, 2100, 2250, 2500, 2560, 2890, 3240, 3610, 4000, 4400, 4410, 4840, 5025, 5290, 5760, 6250, 6400, 6760, 7290, 7840, 8410
Offset: 1

Views

Author

Paolo P. Lava, Nov 07 2014

Keywords

Comments

A245096 gives the numbers whose squares become cubes if one of their digit is deleted.
Numbers with single-digit cubes are not included. - Davin Park, Dec 30 2016

Examples

			21^3 = 9261 and sqrt(961) = 31.
44^3 = 85184 and sqrt(5184) = 72.
45625^3 = 94974853515625 and sqrt(9474853515625) = 3078125.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=n^3; for k from 1 to ilog10(a) do
    if type(sqrt(trunc(a/10^(k+1))*10^k+(a mod 10^k)),integer)
    then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    f[n_] := !MissingQ@SelectFirst[Delete[IntegerDigits[n^3], #] & /@ Range[IntegerLength[n^3]], IntegerQ@Sqrt@FromDigits@# &];
    Select[Range[4, 1000], f] (* Davin Park, Dec 30 2016 *)

A247267 Square numbers not divisible by 100 that remain square when their most-significant (or leftmost) digit is removed.

Original entry on oeis.org

1, 4, 9, 49, 64, 81, 225, 625, 1225, 2025, 3025, 4225, 5625, 7225, 9025, 15625, 27225, 30625, 34225, 42025, 50625, 60025, 70225, 75625, 81225, 93025, 105625, 275625, 330625, 600625, 893025, 950625, 970225, 1050625, 2030625, 3330625, 4950625, 9455625, 9765625, 15405625
Offset: 1

Views

Author

Chai Wah Wu, Nov 01 2014

Keywords

Comments

Subsequence of A225885. It is easy to see that the multiples of 100 in A225885 are earlier entries of the sequence multiplied by 100, so this sequence removes this redundancy in some sense. It appears that all entries in A225885 after the first 3 entries ends in either 25 or 00, so this sequence appears to end in 25 after the first 3 entries.

Crossrefs

Programs

  • PARI
    for(n=10,10^6,if(n%100,if(issquare(n)&&issquare(n%(10^(#Str(n)-1))),print1(n,", ")))) \\ Derek Orr, Nov 01 2014

Extensions

Added 1, 4, 9 to sequence to match A225885 - Chai Wah Wu, Nov 03 2014
Showing 1-3 of 3 results.