A249590 E.g.f.: BesselI(0,2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).
1, 1, 6, 63, 1162, 31263, 1207344, 61719326, 4103067834, 341454828363, 34946904263560, 4304483416099530, 629558493157805370, 107728435291299602135, 21346960361800584031800, 4847223770735591212039818, 1250978551922243595690043914, 364052135715732457875255719691
Offset: 0
Keywords
Examples
E.g.f.: 1 + x + 6*x^2/2!^2 + 63*x^3/3!^2 + 1162*x^4/4!^2 + 31263*x^5/5!^2 +... such that A(x) = BesselI(0,2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k). More explicitly, P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...); Q(x) = 1/(1-x) + 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) +... We can illustrate the initial terms a(n) in the following manner. The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin: q(0) = 1.279585302336067267437204440811533... q(1) = 1.279585302336067267437204440811533... q(2) = 5.397926511680336337186022204057666... q(3) = 48.69967981446729610442301759976513... q(4) = 789.3250187996735809262470013346725... q(5) = 19745.00072507184117617488656759887... q(6) = 713288.6822890207712374724807435860... q(7) = 34956701.28771539805703277298850790... q(8) = 2239176303.370447012433955813571405... q(9) = 181385849371.3820539848573249577420... and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin: A249078 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...]; from which we can generate this sequence like so: a(0) = BesselI(0,2)*1 - q(0) = 1; a(1) = BesselI(0,2)*1 - q(1) = 1; a(2) = BesselI(0,2)*5 - q(2) = 6; a(3) = BesselI(0,2)*49 - q(3) = 63; a(4) = BesselI(0,2)*856 - q(4) = 1162; a(5) = BesselI(0,2)*22376 - q(5) = 31263; a(6) = BesselI(0,2)*842536 - q(6) = 1207344; a(7) = BesselI(0,2)*42409480 - q(7) = 61719326; a(8) = BesselI(0,2)*2782192064 - q(8) = 4103067834; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..100
Programs
-
PARI
\p100 \\ set precision {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588 {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); } for(n=0, 30, print1(round(besseli(0,2)*P[n+1]-Q[n+1]), ", "))
Comments