A249604 a(n) = Sum_{i=1..n} Fibonacci(i)*10^(i-1).
1, 11, 211, 3211, 53211, 853211, 13853211, 223853211, 3623853211, 58623853211, 948623853211, 15348623853211, 248348623853211, 4018348623853211, 65018348623853211, 1052018348623853211, 17022018348623853211, 275422018348623853211, 4456422018348623853211
Offset: 1
Examples
To get a(10), for example: ..........1 .........1 ........2 .......3 ......5 .....8 ...13 ..21 .34 55 ----------- 58623853211
References
- D. R. Kaprekar, Demlofication of Fibonacci numbers, Journal of University of Bombay, Nov. 1945. Reprinted in D. R. Kaprekar, Demlo Numbers, Privately printed, Khare's Wada, Deolali, India, 1948, pp. 75-82.
Links
- Colin Barker, Table of n, a(n) for n = 1..800
- Index entries for linear recurrences with constant coefficients, signature (11,90,-100).
Programs
-
PARI
Vec(x / ((1-x)*(1-10*x-100*x^2)) + O(x^30)) \\ Colin Barker, Jun 26 2017
Formula
O.g.f.: x/((1-x)*(1-10*x-100*x^2)). - Bruno Berselli, Nov 04 2014
From Colin Barker, Jun 26 2017: (Start)
a(n) = ((-10 + (5-21*sqrt(5))*(5-5*sqrt(5))^n + (5*(1+sqrt(5)))^n*(5+21*sqrt(5)))) / 1090.
a(n) = 11*a(n-1) + 90*a(n-2) - 100*a(n-3) for n>3.
(End)