A249629 Number of strings of length n over a 4-letter alphabet that begin with a nontrivial palindrome.
0, 0, 4, 28, 124, 532, 2164, 8788, 35284, 141628, 567004, 2269948, 9081724, 36334492, 145345564, 581412508, 2325680284, 9302841652, 37211487124, 148846430068, 595386201844, 2381546731732, 9526188851284, 38104763100628, 152419060098004, 609676271166388, 2438705115439924, 9754820584849588
Offset: 0
Examples
for n=3 the a(3) = 28 solutions are: 000, 001, 002, 003, 010, 020, 030, 101, 110, 111, 112, 113, 121, 131, 202, 212, 220, 221, 222, 223, 232, 303, 313, 323, 330, 331, 332, 333.
Links
- Peter Kagey, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Haskell
import Data.Ratio a 0 = 0; a 1 = 0; a n = 4 * a(n - 1) + 4^ceiling(n % 2) - a(ceiling(n % 2)) -- Peter Kagey, Aug 13 2015
-
Magma
[0] cat [n le 1 select 0 else 4*Self(n-1) + 4^Ceiling((n)/2) - Self(Ceiling((n)/2)): n in [1..40]]; // Vincenzo Librandi, Aug 20 2015
-
Mathematica
a249629[n_] := Block[{f}, f[0] = f[1] = 0; f[x_] := 4*f[x - 1] + 4^Ceiling[x/2] - f[Ceiling[x/2]]; Table[f[i], {i, 0, n}]]; a249629[27] (* Michael De Vlieger, Dec 27 2014 *)
-
Ruby
seq = [0, 0]; (2..N).each{ |i| seq << 4 * seq[i-1] + 4**((i+1)/2) - seq[(i+1)/2] }
Formula
a(0) = 0; a(1) = 0; a(n+1) = 4*a(n) + 4^ceiling((n+1)/2) - a(ceiling((n+1)/2)).
Comments