A249703 Number of length n+3 0..4 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
205, 485, 1153, 2601, 5425, 11925, 27113, 61725, 137593, 307437, 694273, 1576625, 3567829, 8061981, 18257849, 41462221, 94184277, 213859241, 485808309, 1104769313, 2514006025, 5722098441, 13027345657, 29673996009, 67626829493
Offset: 1
Keywords
Examples
Some.solutions.for.n=6 ..3....2....4....1....1....3....4....2....4....3....2....0....1....3....0....0 ..2....2....1....2....1....2....0....2....3....3....2....1....0....1....2....1 ..3....2....4....2....3....2....1....2....0....2....2....4....1....1....3....1 ..3....1....4....2....1....2....1....3....3....3....0....1....1....1....2....2 ..3....4....4....4....0....4....1....2....3....3....2....1....4....0....0....1 ..3....2....4....2....1....2....4....2....3....3....3....1....0....1....2....0 ..4....2....4....0....1....2....1....0....3....3....2....1....1....1....2....1 ..1....0....1....2....4....2....1....2....2....4....0....0....1....3....2....3 ..3....2....4....4....0....4....0....4....3....2....2....1....4....0....0....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +25*a(n-4) -39*a(n-5) -30*a(n-6) +40*a(n-7) -176*a(n-8) +78*a(n-9) +365*a(n-10) +57*a(n-11) +515*a(n-12) +361*a(n-13) -923*a(n-14) -1037*a(n-15) -1152*a(n-16) -1164*a(n-17) +750*a(n-18) +1980*a(n-19) +1872*a(n-20) +1440*a(n-21) -432*a(n-22) -1728*a(n-23) -864*a(n-24)
Comments