cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A249701 Number of length n+3 0..2 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

39, 69, 125, 221, 377, 659, 1177, 2119, 3805, 6857, 12437, 22681, 41475, 76011, 139645, 257161, 474439, 876539, 1621387, 3002407, 5564769, 10321599, 19156321, 35571383, 66081147, 122803551, 228283091, 424467169, 789412673, 1468380739
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Examples

			Some solutions for n=6:
..0....0....1....2....1....2....1....2....1....1....2....0....1....1....1....1
..1....1....0....0....2....2....2....1....0....1....1....1....0....0....1....2
..2....0....1....1....1....2....0....1....2....1....1....2....1....1....1....1
..1....0....1....1....0....2....1....1....1....1....1....1....1....2....1....1
..0....0....1....2....1....0....1....1....1....0....2....0....1....1....1....0
..1....0....1....1....1....2....1....1....1....1....0....1....0....1....1....1
..1....0....1....1....1....2....1....2....1....1....1....1....1....1....1....1
..2....0....1....0....1....2....2....0....0....1....1....2....1....1....0....1
..0....1....0....1....0....2....1....1....2....1....2....1....2....0....1....0
		

Crossrefs

Column 2 of A249707.

Formula

Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) + 2*a(n-4) - 5*a(n-5) + a(n-6) -a(n-7) - 2*a(n-8) + 2*a(n-10).
Empirical g.f.: x*(39 - 48*x + 35*x^2 - 25*x^3 - 127*x^4 - 2*x^5 - 55*x^6 - 36*x^7 + 34*x^8 + 54*x^9) / ((1 + x)*(1 - 2*x + 2*x^2 - 2*x^3)*(1 - 2*x + x^2 - x^3 - x^4 + x^6)). - Colin Barker, Nov 09 2018

A249702 Number of length n+3 0..3 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

100, 208, 440, 896, 1724, 3440, 7056, 14544, 29620, 60416, 124156, 256448, 529304, 1091952, 2255920, 4669824, 9673196, 20037568, 41516752, 86070656, 178513920, 370298992, 768179120, 1593817584, 3307416676, 6864100336, 14246134420
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Comments

Column 3 of A249707

Examples

			Some solutions for n=6
..1....1....3....1....0....1....1....1....2....2....1....1....2....0....2....0
..2....2....2....2....1....1....0....1....2....1....0....1....2....3....2....2
..2....2....0....2....2....1....2....2....3....2....1....1....2....1....3....3
..3....2....2....2....1....0....1....1....1....2....1....1....2....1....2....2
..2....1....2....3....1....2....1....1....2....2....1....3....2....0....2....0
..2....3....3....0....0....1....1....1....2....2....1....0....2....1....2....2
..2....2....1....2....1....1....1....1....2....0....1....1....1....1....3....2
..3....2....2....2....2....1....0....0....3....3....0....1....3....1....2....3
..0....1....2....2....1....3....3....3....1....2....3....3....2....0....2....2
		

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +12*a(n-4) -10*a(n-5) -41*a(n-8) -6*a(n-9) -2*a(n-10) +2*a(n-11) +44*a(n-12) +36*a(n-13) +16*a(n-14) -24*a(n-16) -24*a(n-17)

A249703 Number of length n+3 0..4 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

205, 485, 1153, 2601, 5425, 11925, 27113, 61725, 137593, 307437, 694273, 1576625, 3567829, 8061981, 18257849, 41462221, 94184277, 213859241, 485808309, 1104769313, 2514006025, 5722098441, 13027345657, 29673996009, 67626829493
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Comments

Column 4 of A249707

Examples

			Some.solutions.for.n=6
..3....2....4....1....1....3....4....2....4....3....2....0....1....3....0....0
..2....2....1....2....1....2....0....2....3....3....2....1....0....1....2....1
..3....2....4....2....3....2....1....2....0....2....2....4....1....1....3....1
..3....1....4....2....1....2....1....3....3....3....0....1....1....1....2....2
..3....4....4....4....0....4....1....2....3....3....2....1....4....0....0....1
..3....2....4....2....1....2....4....2....3....3....3....1....0....1....2....0
..4....2....4....0....1....2....1....0....3....3....2....1....1....1....2....1
..1....0....1....2....4....2....1....2....2....4....0....0....1....3....2....3
..3....2....4....4....0....4....0....4....3....2....2....1....4....0....0....1
		

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +25*a(n-4) -39*a(n-5) -30*a(n-6) +40*a(n-7) -176*a(n-8) +78*a(n-9) +365*a(n-10) +57*a(n-11) +515*a(n-12) +361*a(n-13) -923*a(n-14) -1037*a(n-15) -1152*a(n-16) -1164*a(n-17) +750*a(n-18) +1980*a(n-19) +1872*a(n-20) +1440*a(n-21) -432*a(n-22) -1728*a(n-23) -864*a(n-24)

A249704 Number of length n+3 0..5 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

366, 966, 2524, 6172, 13666, 32500, 80360, 198164, 474302, 1140694, 2782978, 6829394, 16652268, 40525818, 98972744, 242571962, 594328514, 1454961448, 3564476384, 8746203338, 21475833432, 52737244176, 129543959312, 318439317418
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Comments

Column 5 of A249707

Examples

			Some solutions for n=6
..1....3....2....5....0....1....2....2....0....2....5....1....4....2....0....2
..1....1....3....4....4....5....4....3....4....3....2....2....4....2....5....4
..3....3....3....4....5....1....2....5....5....0....1....4....3....2....4....1
..1....3....3....4....4....0....0....3....4....2....2....2....5....0....4....2
..0....3....3....4....3....1....2....3....4....2....3....2....4....2....1....2
..1....3....3....4....4....3....5....3....4....5....2....2....4....4....4....2
..5....2....4....0....4....1....2....3....4....2....2....2....1....2....4....2
..1....4....1....5....5....1....0....1....4....0....2....4....5....0....5....0
..0....3....3....4....1....0....2....4....3....2....3....1....4....2....2....3
		

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +45*a(n-4) -80*a(n-5) +35*a(n-6) -757*a(n-8) +513*a(n-9) +28*a(n-10) +28*a(n-11) +6071*a(n-12) +1434*a(n-13) +314*a(n-14) -486*a(n-15) -26788*a(n-16) -25212*a(n-17) -13792*a(n-18) -4416*a(n-19) +68776*a(n-20) +102232*a(n-21) +67200*a(n-22) +29760*a(n-23) -93984*a(n-24) -186624*a(n-25) -130176*a(n-26) -43776*a(n-27) +69120*a(n-28) +138240*a(n-29) +69120*a(n-30)

A249705 Number of length n+3 0..6 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

595, 1729, 4893, 12789, 29673, 75495, 200489, 528755, 1341901, 3434085, 8949133, 23454657, 60890031, 157756415, 410782645, 1074162701, 2805580083, 7318553467, 19112582503, 50014143783, 130956449801, 342843638551, 897866650281
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Comments

Column 6 of A249707

Examples

			Some solutions for n=6
..2....3....4....6....4....1....3....5....3....2....2....6....1....0....0....2
..5....2....3....1....4....4....4....1....4....3....3....0....3....5....5....1
..5....3....6....1....3....4....2....0....6....4....2....4....5....5....5....6
..5....3....4....1....5....5....3....1....4....3....1....4....3....5....6....2
..1....6....4....0....4....3....3....1....4....3....2....4....3....5....5....2
..5....3....4....6....4....4....3....1....2....3....2....4....3....5....5....2
..5....3....1....1....2....4....6....4....4....3....6....1....3....1....5....2
..5....0....6....1....5....6....3....1....4....0....2....4....3....5....5....3
..3....3....4....0....4....3....2....1....6....5....1....5....3....5....3....0
		

Formula

Empirical: a(n) = 4*a(n-1) -3*a(n-2) -5*a(n-3) +77*a(n-4) -188*a(n-5) -44*a(n-6) +328*a(n-7) -2041*a(n-8) +2681*a(n-9) +4824*a(n-10) -4044*a(n-11) +25336*a(n-12) -7463*a(n-13) -80625*a(n-14) -21968*a(n-15) -198280*a(n-16) -135500*a(n-17) +551797*a(n-18) +646315*a(n-19) +1307173*a(n-20) +1558772*a(n-21) -1777441*a(n-22) -4439396*a(n-23) -6651096*a(n-24) -8197360*a(n-25) +1807976*a(n-26) +15419208*a(n-27) +21844724*a(n-28) +23090640*a(n-29) +3731760*a(n-30) -28712880*a(n-31) -41155200*a(n-32) -32803200*a(n-33) -6163200*a(n-34) +27648000*a(n-35) +31104000*a(n-36) +10368000*a(n-37)

A249706 Number of length n+3 0..7 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

904, 2864, 8688, 24032, 57912, 156416, 442144, 1235840, 3295784, 8902160, 24576568, 68205968, 186882480, 511124496, 1407327072, 3893357456, 10747255576, 29617387520, 81753189024, 226221330256, 626221254528, 1732751390816
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Comments

Column 7 of A249707.

Examples

			Some solutions for n=6
..4....2....6....1....4....4....1....0....2....2....4....2....4....4....6....4
..3....0....3....7....4....3....2....1....6....0....1....0....3....3....3....6
..0....2....3....4....3....5....2....1....6....3....1....2....3....0....6....5
..3....2....3....4....7....4....3....5....6....2....0....2....3....3....6....5
..3....2....4....2....4....4....2....1....6....2....5....4....0....5....6....1
..4....2....3....5....4....4....1....0....6....2....1....0....3....3....7....5
..3....6....1....4....2....0....2....1....7....1....1....2....3....1....3....5
..3....0....3....4....5....4....5....1....3....3....1....2....6....3....6....6
..1....2....6....1....4....5....2....6....6....2....3....6....0....5....6....5
		

Crossrefs

Cf. A249707.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +111*a(n-4) -308*a(n-5) +280*a(n-6) -84*a(n-7) -5194*a(n-8) +8288*a(n-9) -3066*a(n-10) +130820*a(n-12) -74128*a(n-13) -10560*a(n-14) -8848*a(n-15) -2004617*a(n-16) -633508*a(n-17) -130504*a(n-18) +130916*a(n-19) +20088708*a(n-20) +21173952*a(n-21) +13092164*a(n-22) +5552064*a(n-23) -132853024*a(n-24) -224564176*a(n-25) -190931472*a(n-26) -114274368*a(n-27) +557555040*a(n-28) +1305213120*a(n-29) +1329331968*a(n-30) +881028864*a(n-31) -1386528192*a(n-32) -4476415104*a(n-33) -5034923712*a(n-34) -3297853440*a(n-35) +1793560320*a(n-36) +8714615040*a(n-37) +10059033600*a(n-38) +5654707200*a(n-39) -1157068800*a(n-40) -7838208000*a(n-41) -7838208000*a(n-42) -2612736000*a(n-43).

A249708 Number of length 2+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

14, 69, 208, 485, 966, 1729, 2864, 4473, 6670, 9581, 13344, 18109, 24038, 31305, 40096, 50609, 63054, 77653, 94640, 114261, 136774, 162449, 191568, 224425, 261326, 302589, 348544, 399533, 455910, 518041, 586304, 661089, 742798, 831845, 928656
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Examples

			Some solutions for n=6:
..3....6....0....3....0....0....2....3....3....5....5....3....4....4....0....2
..2....2....2....4....4....4....1....2....1....6....3....5....1....0....4....2
..0....2....3....4....4....5....0....2....5....5....4....6....2....4....1....2
..2....0....2....6....5....4....1....2....3....5....4....5....2....4....1....2
..4....6....0....3....1....2....2....5....3....4....5....5....2....6....0....1
		

Crossrefs

Row 2 of A249707.

Formula

Empirical: a(n) = (1/2)*n^4 + 4*n^3 + (11/2)*n^2 + 3*n + 1.
Conjectures from Colin Barker, Nov 09 2018: (Start)
G.f.: x*(2 - x)*(7 + 3*x + 3*x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A249709 Number of length 3+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

20, 125, 440, 1153, 2524, 4893, 8688, 14433, 22756, 34397, 50216, 71201, 98476, 133309, 177120, 231489, 298164, 379069, 476312, 592193, 729212, 890077, 1077712, 1295265, 1546116, 1833885, 2162440, 2535905, 2958668, 3435389, 3971008, 4570753
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Examples

			Some solutions for n=6:
..3....3....1....1....0....6....3....0....6....0....1....2....5....0....1....2
..6....4....0....0....3....3....4....1....3....5....5....5....2....2....6....5
..0....3....1....0....4....3....4....1....1....1....3....6....2....1....3....5
..3....3....1....0....3....3....4....1....3....1....3....5....2....1....3....6
..3....3....2....2....3....3....4....0....3....1....3....5....5....0....1....4
..6....6....1....0....0....5....1....3....6....6....1....3....0....2....4....5
		

Crossrefs

Row 3 of A249707.

Formula

Empirical: a(n) = (1/15)*n^5 + 2*n^4 + 7*n^3 + 7*n^2 + (44/15)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(20 + 5*x - 10*x^2 - 12*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A249710 Number of length 4+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

28, 221, 896, 2601, 6172, 12789, 24032, 41937, 69052, 108493, 164000, 239993, 341628, 474853, 646464, 864161, 1136604, 1473469, 1885504, 2384585, 2983772, 3697365, 4540960, 5531505, 6687356, 8028333, 9575776, 11352601, 13383356
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Examples

			Some solutions for n=6:
..1....3....4....5....2....1....2....6....6....5....1....2....2....3....2....2
..3....5....3....0....6....0....3....1....3....3....3....2....4....3....4....3
..6....1....1....2....3....1....0....1....2....5....3....1....2....5....5....3
..3....3....3....2....3....1....2....1....3....5....4....2....2....3....4....3
..3....3....4....2....3....1....2....4....3....5....3....2....1....3....1....4
..0....3....3....1....3....2....2....1....5....3....3....5....2....3....4....3
..6....2....2....6....1....0....2....1....1....5....1....1....4....5....6....2
		

Crossrefs

Row 4 of A249707.

Formula

Empirical: a(n) = (7/15)*n^5 + 5*n^4 + 11*n^3 + 8*n^2 + (38/15)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(28 + 53*x - 10*x^2 - 20*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A249711 Number of length 5+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

38, 377, 1724, 5425, 13666, 29673, 57912, 104289, 176350, 283481, 437108, 650897, 940954, 1326025, 1827696, 2470593, 3282582, 4294969, 5542700, 7064561, 8903378, 11106217, 13724584, 16814625, 20437326, 24658713, 29550052, 35188049, 41655050
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Examples

			Some solutions for n=6:
..0....2....1....1....0....2....5....4....0....5....2....3....0....6....3....4
..1....2....5....5....4....5....2....4....3....2....2....3....2....0....3....2
..5....0....6....6....3....3....3....6....5....6....2....3....2....2....3....1
..1....6....5....5....3....3....3....4....3....5....6....6....4....2....1....2
..0....2....5....5....3....3....5....4....1....5....1....1....2....2....3....2
..1....2....5....5....0....0....3....0....3....5....2....3....2....2....5....2
..6....2....4....4....6....3....2....4....3....3....2....3....1....1....3....3
..1....2....5....6....3....5....3....5....5....5....3....6....6....5....3....1
		

Crossrefs

Row 5 of A249707.

Formula

Empirical: a(n) = (5/3)*n^5 + 10*n^4 + 16*n^3 + 8*n^2 + (4/3)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(38 + 149*x + 32*x^2 - 24*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Showing 1-10 of 12 results. Next