cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249809 Irregular table read by rows: T(n, k) is the number of times prime p_k has occurred as the smallest prime factor of numbers 1 .. n. (T(1,1) = 0, and for each n > 1, k = 1 .. A000720(n)).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 4, 2, 1, 1, 5, 2, 1, 1, 5, 2, 1, 1, 1, 6, 2, 1, 1, 1, 6, 2, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 7, 3, 1, 1, 1, 1, 8, 3, 1, 1, 1, 1, 8, 3, 1, 1, 1, 1, 1, 9, 3, 1, 1, 1, 1, 1, 9, 3, 1, 1, 1, 1, 1, 1, 10, 3, 1, 1, 1, 1, 1, 1, 10, 4, 1, 1, 1, 1, 1, 1, 11, 4, 1, 1, 1, 1, 1, 1, 11, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

After the first row {0}, consists of rows of triangular table A249808 with trailing zeros removed.

Examples

			Table begins:
       k=1  2  3  4  5  6  7
  n=1:   0;
  n=2:   1;
  n=3:   1, 1;
  n=4:   2, 1;
  n=5:   2, 1, 1;
  n=6:   3, 1, 1;
  n=7:   3, 1, 1, 1;
  n=8:   4, 1, 1, 1;
  n=9:   4, 2, 1, 1;
  n=10:  5, 2, 1, 1;
  n=11:  5, 2, 1, 1, 1;
  n=12:  6, 2, 1, 1, 1;
  n=13:  6, 2, 1, 1, 1, 1;
  n=14:  7, 2, 1, 1, 1, 1;
  n=15:  7, 3, 1, 1, 1, 1;
  n=16:  8, 3, 1, 1, 1, 1;
  n=17:  8, 3, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

A004526 gives the left edge, A001477 the row sums.

Programs

Formula

a(n) = A249808(A249728(n), A249727(n)).
For n > 1, A078898(n) = T(n, A055396(n)).

A249727 Start with a(1) = 1; then numbers 1 .. primepi(2), followed by numbers 1 .. primepi(3), and then numbers 1 .. primepi(4), ..., etc, where A000720 gives primepi.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

Can be used to construct the irregular table A249809.
This is a fractal sequence; i.e., the removal of the first occurrence of each term in A249727 leaves A249727, so that the sequence contains itself infinitely many times. The corresponding interspersion is A272616. - Clark Kimberling, May 12 2016

Crossrefs

Programs

Showing 1-2 of 2 results.