cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249744 a(n) = 0 if n is 1 or a prime, otherwise, when n = A020639(n) * A032742(n), a(n) = the largest m < n such that A020639(m) = A020639(n), where A020639(n) and A032742(n) are the smallest prime and the largest proper divisor dividing n.

Original entry on oeis.org

0, 0, 0, 2, 0, 4, 0, 6, 3, 8, 0, 10, 0, 12, 9, 14, 0, 16, 0, 18, 15, 20, 0, 22, 5, 24, 21, 26, 0, 28, 0, 30, 27, 32, 25, 34, 0, 36, 33, 38, 0, 40, 0, 42, 39, 44, 0, 46, 7, 48, 45, 50, 0, 52, 35, 54, 51, 56, 0, 58, 0, 60, 57, 62, 55, 64, 0, 66, 63, 68, 0, 70, 0, 72, 69, 74, 49, 76, 0, 78, 75, 80, 0, 82, 65, 84, 81, 86, 0, 88, 77, 90, 87, 92, 85, 94, 0, 96, 93, 98, 0, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

For all composite numbers, a(n) tells what is the previous number processed by the sieve of Eratosthenes, i.e., number which is immediately left of n on the same row where n is in arrays like A083140, A083221.

Crossrefs

Can be used to compute A078898.

Programs

Formula

a(n) = A020639(n) * A249738(n).
Other identities. For all n >= 1 it holds:
a(2n) = 2n-2.
a(A001248(n)) = A000040(n). [I.e., a(p^2) = p for primes p.]