cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249770 Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order n with k invariant factors (2 <= n, 1 <= k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Álvar Ibeas, Nov 06 2014

Keywords

Comments

The length of n-th row is A051903(n) and its last element is A249773(A101296(n)).
T(n,k) depends only on k and the prime signature of n.

Examples

			First rows:
1;
1;
1,1;
1;
1;
1;
1,1,1;
1,1;
1;
1;
1,1;
1;
1;
1;
1,2,1,1;
1;
...
		

Crossrefs

Programs

  • Mathematica
    f[{x_, y_}] := x^IntegerPartitions[y];
    g[n_] := FactorInteger[n][[1, 1]];
    h[list_] := Apply[Times,Map[PadRight[#, Max[Map[Length, SplitBy[list, g]]], 1] &,SplitBy[list, g]]]; t[list_] := Tally[Map[Length, list]][[All, 2]];
    Map[t, Table[Map[h, Join @@@ Tuples[Map[f, FactorInteger[n]]]], {n, 2, 50}]] // Grid (* Geoffrey Critzer, Nov 26 2015 *)

Formula

T(n,k) = A249771(A101296(n),k).
T(n,1) = 1. If k > 1 and n = Product(p_i^e_i), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,omega(n)}.
If p is prime and gcd(p,n) = 1, T(pn,k) = T(n,k).
Dirichlet g.f. of column sums: zeta(s)zeta(2s)···zeta(ms) = 1 + Sum_{n >= 2} (Sum_{k=1..m} T(n,k)) / n^s.
T(n,1) + T(n,2) = A046951(n)