A249770 Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order n with k invariant factors (2 <= n, 1 <= k).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
Examples
First rows: 1; 1; 1,1; 1; 1; 1; 1,1,1; 1,1; 1; 1; 1,1; 1; 1; 1; 1,2,1,1; 1; ...
Links
- Álvar Ibeas, Rows n=2..58654, flattened
Crossrefs
Programs
-
Mathematica
f[{x_, y_}] := x^IntegerPartitions[y]; g[n_] := FactorInteger[n][[1, 1]]; h[list_] := Apply[Times,Map[PadRight[#, Max[Map[Length, SplitBy[list, g]]], 1] &,SplitBy[list, g]]]; t[list_] := Tally[Map[Length, list]][[All, 2]]; Map[t, Table[Map[h, Join @@@ Tuples[Map[f, FactorInteger[n]]]], {n, 2, 50}]] // Grid (* Geoffrey Critzer, Nov 26 2015 *)
Formula
T(n,1) = 1. If k > 1 and n = Product(p_i^e_i), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,omega(n)}.
If p is prime and gcd(p,n) = 1, T(pn,k) = T(n,k).
Dirichlet g.f. of column sums: zeta(s)zeta(2s)···zeta(ms) = 1 + Sum_{n >= 2} (Sum_{k=1..m} T(n,k)) / n^s.
T(n,1) + T(n,2) = A046951(n)
Comments