A249779 Row "sums" of Pascal triangle (A007318), using operation <+> defined in comment in A245618.
1, 2, 2, 2, 2, 22, 20, 28, 2, 494, 912, 1672, 2376, 4836, 4160, 4184, 2, 131038, 261800, 522272, 1035804, 2053288, 3977272, 7742352, 13942968, 28016020, 47111040, 84948528, 92072064, 272727022, 249686810, 167376688, 2, 8589934526, 17179867992, 34359725136
Offset: 0
Keywords
Examples
For n=4, we have row 1,4,6,4,1. By definition of <+>, we find 1<+>4=3, 3<+>6=3, 3<+>4=1, 1<+>1=2. So a(4)=2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a249779[n_Integer] := Module[{m0082, pls, lst}, m0082[j_] := Table[Binomial[j, k], {k, 0, j}]; pls[k_, m_] := Abs[k + (-1)^(k + m)*m]; lst = m0082[n]; For[i = 0, i < n, i++, lst[[2]] = pls[lst[[1]], lst[[2]]]; lst = Drop[lst, 1]]; lst[[1]] ]; a249779 /@ Range[35] (* Michael De Vlieger, Nov 23 2014 *) parityAdd[a_,b_]:=Abs[a+b (-1)^(a+b)]; Map[Fold[parityAdd,First[#],Rest[#]]&[Binomial[#,Range[0,#]]]&,Range[0,35]] (* Peter J. C. Moses, Dec 01 2014 *)
Extensions
More terms from Peter J. C. Moses, Nov 05 2014
Comments