A249784 Number of divisors of n^(n^n).
1, 5, 28, 513, 3126, 2176875649, 823544, 50331649, 774840979, 100000000020000000001, 285311670612, 158993694406808436568227841, 302875106592254, 123476695691247958050243432972289, 191751059232884087544279144287109376, 73786976294838206465
Offset: 1
Keywords
Examples
12 = 2^2 * 3^1 (two distinct prime factors, with multiplicities e_1=2 and e_2=1), so a(12) = (2*k+1)*(1*k+1) = 2*k^2 + 3*k + 1 where k = 12^12, so a(12) = 158993694406808436568227841.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..155
Programs
-
Magma
// program to generate b-file for n in [1..155] do k:=n^n; F:=Factorization(n); prod:=1; for j in [1..#F] do prod*:=F[j,2]*k + 1; end for; n, prod; end for;
-
PARI
a(n)=my(v=factor(n)[,2]*n^n); prod(i=1,#v,v[i]+1) \\ Charles R Greathouse IV, Jul 21 2015
-
Sage
def A249784(n): n_exp_n = n^n return mul(exp[1]*n_exp_n + 1 for exp in factor(n)) [A249784(n) for n in (1..16)] # Peter Luschny, Nov 08 2014
Formula
a(n) = Product_{j=1..m} (e_j * n^n + 1)
where m = number of distinct prime factors of n
and e_j = multiplicity of the j-th prime factor.
If n is a prime p, then m=1 and e_1=1, so
If n=10^L, then m=2 and e_1=e_2=L, so
a(10^L) = (L * 10^(L * 10^L) + 1)^2.
Comments