A249806 Smallest odd number k>1 such that k*2^prime(n)-1 is also prime.
3, 3, 7, 3, 3, 9, 7, 51, 13, 7, 15, 21, 15, 3, 31, 147, 45, 69, 43, 73, 15, 69, 91, 19, 51, 81, 3, 25, 9, 85, 103, 55, 169, 225, 109, 145, 15, 103, 615, 69, 259, 69, 63, 45, 285, 471, 9, 255, 169, 489, 69, 273, 427, 43, 391, 169, 201, 21
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A135434.
Programs
-
Maple
3*2^2-1=11 prime so a(1)=3. 3*2^3-1=23 prime so a(2)=3. 3*2^5-1=95 composite, 5*2^5-1=159 composite, 7*2^5-1=223 prime so a(3)=7.
-
Mathematica
a249806[n_Integer] := Catch[Module[{k}, For[k = 3, k < 10^5, k += 2, If[PrimeQ[k*2^Prime[n] - 1], Throw[k], 0]]]]; a249806 /@ Range[120] (* Michael De Vlieger, Nov 11 2014 *)
-
PARI
s=[]; forprime(p=2, 500, k=3; q=2^p; while(!ispseudoprime(k*q-1), k+=2); s=concat(s, k)); s \\ Colin Barker, Nov 06 2014
Comments