A249808 Triangular table read by rows, a lower right triangular region of square array A(n,k) is the number of times prime p_k has occurred as the smallest prime factor of numbers 1..n.
0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 1, 1, 0, 0, 3, 1, 1, 0, 0, 0, 3, 1, 1, 1, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 0, 0, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 6, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 7, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 7, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
The first eleven rows of this triangular table: 0; 1, 0; 1, 1, 0; 2, 1, 0, 0; 2, 1, 1, 0, 0; 3, 1, 1, 0, 0, 0; 3, 1, 1, 1, 0, 0, 0; 4, 1, 1, 1, 0, 0, 0, 0; 4, 2, 1, 1, 0, 0, 0, 0, 0; 5, 2, 1, 1, 0, 0, 0, 0, 0, 0; 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0; ...
Links
Crossrefs
Programs
-
Mathematica
FoldList[Append[MapAt[# + 1 &, #1, PrimePi@ FactorInteger[#2][[1, 1]]], 0] &, {0}, Range[2, 15]] // Flatten (* Michael De Vlieger, Nov 24 2017 *)
-
Scheme
(define (A249808 n) (A249808bi (A002024 n) (A002260 n))) (define (A249808bi row col) (if (= 1 row) 0 (+ (A249808bi (- row 1) col) (if (= (A055396 row) col) 1 0))))
Formula
If row n = 1, A(n,k) = 0, otherwise A(n,k) = A(n-1,k) + [A055396(n) = k], where the subexpression with the Iverson bracket is 1 if the index of the smallest prime dividing n is equal to k, and 0 otherwise. This is a formula for a full square array containing mostly zeros. The terms of this sequence are those collected from the lower right triangle of that square array.
Comments