A249869 Triangle giving the area of primitive Pythagorean triangles, with zero entries for non-primitive triangles.
6, 0, 30, 60, 0, 84, 0, 210, 0, 180, 210, 0, 0, 0, 330, 0, 630, 0, 924, 0, 546, 504, 0, 1320, 0, 1560, 0, 840, 0, 1386, 0, 2340, 0, 0, 0, 1224, 990, 0, 2730, 0, 0, 0, 3570, 0, 1710, 0, 2574, 0, 4620, 0, 5610, 0, 5016, 0, 2310, 1716, 0, 0, 0, 7140, 0, 7980, 0, 0, 0, 3036
Offset: 2
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 2: 6 3: 0 30 4: 60 0 84 5: 0 210 0 180 6: 210 0 0 0 330 7: 0 630 0 924 0 546 8: 504 0 1320 0 1560 0 840 9: 0 1386 0 2340 0 0 0 1224 10: 990 0 2730 0 0 0 3570 0 1710 11: 0 2574 0 4620 0 5610 0 5016 0 2310 12: 1716 0 0 0 7140 0 7980 0 0 0 3036 ... For more rows see the link. T(5, 2) = 210 for the primitive triangle (21, 20, 29). T(6, 1) = 210 for the primitive triangle (35, 12, 37).
Links
- Wolfdieter Lang, First rows of the triangle.
- Wolfdieter Lang, A Note on the Area table A249869 for Primitive Pythagorean Triangles.
Crossrefs
Formula
T(n, m) = n*m*(n+m)(n-m) if n > m >= 1, (-1)^(n+m) = -1 and gcd(n,m) = 1, else 0.
Comments