cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249870 Rational parts of the Q(sqrt(3)) integers giving the square of the radii for lattice point circles for the Archimedean tiling (3, 4, 6, 4).

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 4, 4, 5, 6, 8, 8, 7, 8, 10, 10, 10, 13, 14, 11, 12, 13, 15, 14, 16, 16, 17, 16, 19, 20, 22, 19, 20, 20, 24, 23, 21, 25, 22, 23, 28, 26, 26, 28, 31, 28, 32, 28, 28, 30, 32, 34, 35, 32, 33, 38, 34, 36, 38, 37, 40, 37, 38, 43, 40, 44, 40, 46
Offset: 0

Views

Author

Wolfdieter Lang, Dec 06 2014

Keywords

Comments

The irrational parts are given in A249871.
The points of the lattice of the Archimedean tiling (3, 4, 6, 4) lie on certain circles around any point. The length of the side of the regular 6-gon is taken as 1 (in some length unit).
The squares of the radii R2(n) of these circles are integers in the real quadratic number field Q(sqrt(3)), hence R2(n) = a(n) + A249871(n)*sqrt(3). The R2 sequence is sorted in increasing order.
For details see the notes given in a link.
This computation was inspired by a construction given by Kival Ngaokrajang in A245094.

Examples

			The pairs [a(n), A249871(n)] for the squares of the radii R2(n) begin:
[0, 0], [1, 0], [2, 0], [3, 0], [2, 1], [4, 0], [4, 1], [4, 2], [5, 2], [6, 3], [8, 2], [8, 3], [7, 4], [8, 4], [10, 3], ...
The corresponding radii R(n) are (Maple 10 digits, if not an integer):
0, 1, 1.414213562, 1.732050808, 1.931851653, 2, 2.394170171, 2.732050808, 2.909312911, 3.346065215, 3.385867927, 3.632650881, 3.732050808, 3.863703305, 3.898224265 ...
		

Crossrefs