A249914 Number of partitions of 4n with equal sums of odd and even parts.
1, 1, 4, 12, 30, 70, 165, 330, 704, 1380, 2688, 4984, 9394, 16665, 29970, 52096, 90090, 152064, 257180, 423360, 697851, 1129392, 1819632, 2891520, 4583250, 7162364, 11161752, 17211180, 26427544, 40208520, 60971520, 91641748, 137290956, 204198876, 302530560
Offset: 0
Keywords
Examples
a(0) = 1: [], the empty partition. a(1) = 1: [2,1,1]. a(2) = 4: [4,3,1], [4,1,1,1,1], [3,2,2,1], [2,2,1,1,1,1]. a(3) = 12: [6,5,1], [6,3,3], [6,3,1,1,1], [6,1,1,1,1,1,1], [5,4,2,1], [5,2,2,2,1], [4,3,3,2], [4,3,2,1,1,1], [4,2,1,1,1,1,1,1], [3,3,2,2,2], [3,2,2,2,1,1,1], [2,2,2,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> combinat[numbpart](n) *b(2*n, 2*n-1): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]]]; a[n_] := PartitionsP[n] b[2n, 2n-1]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*6^(3/4)*n^(7/4)). - Vaclav Kotesovec, Dec 11 2020