cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249914 Number of partitions of 4n with equal sums of odd and even parts.

Original entry on oeis.org

1, 1, 4, 12, 30, 70, 165, 330, 704, 1380, 2688, 4984, 9394, 16665, 29970, 52096, 90090, 152064, 257180, 423360, 697851, 1129392, 1819632, 2891520, 4583250, 7162364, 11161752, 17211180, 26427544, 40208520, 60971520, 91641748, 137290956, 204198876, 302530560
Offset: 0

Views

Author

Alois P. Heinz, Feb 11 2015

Keywords

Examples

			a(0) = 1: [], the empty partition.
a(1) = 1: [2,1,1].
a(2) = 4: [4,3,1], [4,1,1,1,1], [3,2,2,1], [2,2,1,1,1,1].
a(3) = 12: [6,5,1], [6,3,3], [6,3,1,1,1], [6,1,1,1,1,1,1], [5,4,2,1], [5,2,2,2,1], [4,3,3,2], [4,3,2,1,1,1], [4,2,1,1,1,1,1,1], [3,3,2,2,2], [3,2,2,2,1,1,1], [2,2,2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> combinat[numbpart](n) *b(2*n, 2*n-1):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]]];
    a[n_] := PartitionsP[n] b[2n, 2n-1];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

a(n) = A000041(n) * A035294(n) = A000041(n) * A000009(2n).
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*6^(3/4)*n^(7/4)). - Vaclav Kotesovec, Dec 11 2020