cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249925 G.f. satisfies: A(x) = 1 + 2*x*A(x) + 5*x^2*A(x)^2.

Original entry on oeis.org

1, 2, 9, 38, 186, 932, 4889, 26238, 143966, 802652, 4536874, 25932348, 149650516, 870675912, 5101656889, 30078478318, 178309845686, 1062198928812, 6355149937934, 38172142221748, 230094601968876, 1391444403490552, 8439240940653834, 51323083138005388, 312896262064813036, 1911980839096481432
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2014

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 38*x^3 + 186*x^4 + 932*x^5 + 4889*x^6 +...
where the square-root of the g.f. yields
sqrt(A(x)) = 1 + x + 4*x^2 + 15*x^3 + 70*x^4 + 336*x^5 + 1716*x^6 + 9009*x^7 + 48620*x^8 +...+ Fibonacci(n+1)*A000108(n)*x^n + +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 112*x^3 + 605*x^4 + 3292*x^5 + 18298*x^6 +...
which obeys A(x) = 1 + 2*x*A(x) + 5*x^2*A(x)^2.
Given series bisections A(x) = B0(x^2) + x*B1(x^2),
B0(x) = 1 + 9*x + 186*x^2 + 4889*x^3 + 143966*x^4 + 4536874*x^5 +...
B1(x) = 2 + 38*x + 932*x^2 + 26238*x^3 + 802652*x^4 + 25932348*x^5 +...
then B1(x)/B0(x) = 2 + 10*x*B1(x):
B1(x)/B0(x) = 2 + 20*x + 380*x^2 + 9320*x^3 + 262380*x^4 + 8026520*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[1-4*x-16*x^2]) / (10*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 29 2014 *)
  • PARI
    {a(n)=local(X=x+O(x^(n+3)),A); A = (1-2*x - sqrt(1-4*X-16*x^2)) / (10*x^2); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = sum(k=0,n,fibonacci(n-k+1)*fibonacci(k+1)*binomial(2*(n-k),n-k)*binomial(2*k,k)/((n-k+1)*(k+1)))}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1-2*x - sqrt(1-4*x-16*x^2)) / (10*x^2).
Self-convolution square of A098614, where A098614(n) = A000045(n+1)*A000108(n), the term-wise product of Fibonacci and Catalan numbers.
a(n) = Sum_{k=0..n} A000045(k+1)*A000045(n-k+1) * A000108(k)*A000108(n-k).
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*Fibonacci(k+1) * C(2*(n-k),n-k)*C(2*k,k) / ((n-k+1)*(k+1)).
a(n) == 1 (mod 2) iff n = 2*(2^k - 1) for k>=0.
Given series bisections B0 and B1 such that A(x) = B0(x^2) + x*B1(x^2), then B1(x)/B0(x) = 2 + 10*x*B1(x), thus B1(x) = 2*B0(x)/(1 - 10*x*B0(x)).
a(n) ~ sqrt(5+2*sqrt(5)) * 2^(n+2) * (1+sqrt(5))^n / (5 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 29 2014. Equivalently, a(n) ~ 5^(1/4) * 2^(2*n+2) * phi^(n + 3/2) / (5 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
Recurrence: (n+2)*a(n) = 2*(2*n+1)*a(n-1) + 16*(n-1)*a(n-2). - Vaclav Kotesovec, Nov 29 2014