A249974 a(1)=1; otherwise, find the first digit from the left in a(n-1) which is 1, 3, 7 or 9. Omitting the digits before this one, we reverse the remaining digits, obtaining s, say. Then a(n) is the smallest prime which ends with s and has not already appeared.
1, 11, 211, 311, 2113, 2311, 5113, 6311, 6113, 8311, 11113, 131111, 3111131, 21311113, 63111131, 31311113, 31111313, 531311113, 1131111313, 273131111311, 311311113137, 5731311113113, 6311311113137, 12731311113113, 2331131111313721
Offset: 1
Examples
Let n=6. Since a(5)=2113, then, omitting 2, we obtain the number 113 whose reverse is s=311. The smallest prime ending with 311 is 2311. So a(6)=2311.
References
- W. Sierpiński, Sur l'existence de nombres premiers avec une suite arbitraire de chiffres initiaux, Le Matematiche Catania, 1951.
- E. Trost, Primzahlen, Verlag Birkhäuser, 1953, Theorems 20 - 21.
Comments