A250031 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))=1.
0, 1, 1, 13, 8, 26, 19, 163, 361, 1223, 1307, 16477, 5749, 83977, 88267, 280817, 147916, 1377406, 2839897, 58552633, 60492571, 63263911, 65468386, 403117367, 549883871, 579629587, 596790577, 1864736021, 1912541636, 29293503812, 59449633388, 969992016739
Offset: 1
Examples
When n=10, the density of numbers m that are coprime to floor(m/10) turns out to be 1223/2100. Hence a(10) = 1223/2100. When n=2, all odd numbers qualify, but only the m=2 among even numbers does; hence the density is 1/2 and therefore a(2)=1. When n=1, only m=1 qualifies, so that the density is 0, and a(1) = 0.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..1000
- S. Sykora, On some number densities related to coprimes, Stan's Library, Vol.V, Nov 2014, DOI: 10.3247/SL5Math14.005
Programs
-
PARI
s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)}; s(n)=1+s_aux(n,1,1); a=vector(1000,n,numerator(1-s(n-1)/n))
Comments