cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A250033 a(n) gives the denominators for A250031(n) as well as for A250032(n).

Original entry on oeis.org

1, 2, 2, 24, 15, 45, 35, 280, 630, 2100, 2310, 27720, 10010, 140140, 150150, 480480, 255255, 2297295, 4849845, 96996900, 101846745, 106696590, 111546435, 669278610, 929553625, 966735770, 1003917915, 3123300180, 3234846615, 48522699225, 100280245065, 1604483921040, 6618496174290, 6819056664420, 7019617154550, 7220177644680
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

See the comments in sequences A250031 and A250032.

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,denominator(s(n-1)/n))

Formula

a(n)=A250031(n)+A250032(n).

A072155 Denominator of Sum_{k=1..n} phi(k)/k.

Original entry on oeis.org

1, 2, 6, 3, 15, 5, 35, 70, 210, 210, 2310, 770, 10010, 10010, 30030, 15015, 255255, 255255, 4849845, 4849845, 4849845, 4849845, 111546435, 37182145, 37182145, 37182145, 111546435, 111546435, 3234846615, 3234846615, 100280245065, 200560490130, 200560490130
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3/2, 13/6, 8/3, 52/15, 19/5, 163/35, 361/70, 1223/210, ...
		

Crossrefs

Cf. A071708 (numerators), A250031, A250032, A250034.

Programs

  • GAP
    List([1..35], n-> DenominatorRat( Sum([1..n], k-> Phi(k)/k) ) ); # G. C. Greubel, Aug 25 2019
  • Magma
    [Denominator( &+[EulerPhi(k)/k: k in [1..n]] ): n in [1..35]]; // G. C. Greubel, Aug 25 2019
    
  • Maple
    with(numtheory); seq(denom( add(phi(k)/k, k=1..n)), n =1..35); # G. C. Greubel, Aug 25 2019
  • Mathematica
    Table[Sum[EulerPhi[k]/k,{k,n}],{n,40}]//Denominator (* Harvey P. Dale, Jun 08 2017 *)
  • PARI
    a(n) = denominator(sum(k=1, n, eulerphi(k)/k)); \\ Michel Marcus, Jan 26 2015
    
  • Sage
    [denominator( sum(euler_phi(k)/k for k in (1..n)) ) for n in (1..35)] # G. C. Greubel, Aug 25 2019
    

Formula

Also denominator of Sum_{i=1..n} (mu(i)/i)*floor(n/i). - Ridouane Oudra, Nov 26 2019

A248499 Numbers m that are coprime to A059995(m): floor(m/10).

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 35, 37, 38, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 67, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 87, 89, 91, 92, 94, 95, 97, 98, 101, 103, 107, 109, 111, 112
Offset: 1

Views

Author

Stanislav Sykora, Oct 07 2014

Keywords

Comments

Definition of "being coprime" and special-case conventions are as in Wikipedia. In particular, when m < 10 then floor(m/10) = 0, and zero is coprime only to 1. The complementary sequence is A248500. Note: The first 57 terms a(n) coincide with A069715, but the two sequences are different.
The limit mean density of these numbers exists and equals 1223/2100 = A250031(10)/A250033(10). - Stanislav Sykora, Dec 08 2014

Examples

			1 is a term because gcd(1,0) = 1.
123 is not a term because gcd(123,12) = 3.
165 is a term because 165 and 16 are coprime.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range@ 120, GCD[#, Floor[#/10]] == 1 &] (* Robert G. Wilson v, Oct 22 2014 *)
  • PARI
    a=vector(20000);
    i=n=0;while(i++,if(gcd(i,i\10)==1,a[n++]=i;if(n==#a,break)));a

Formula

{ m : gcd(m, floor(m/10)) = 1 }.

A248501 Numbers m that are coprime to floor(m/16).

Original entry on oeis.org

1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 97, 101, 103, 107, 109, 113, 114, 115
Offset: 1

Views

Author

Stanislav Sykora, Oct 07 2014

Keywords

Comments

Definition of 'being coprime' and special-case conventions are as in Wikipedia. In particular, when m < 16 then floor(m/16) = 0, and zero is coprime only to 1. The complementary sequence is A248502.
The asymptotic density of this sequence is A250031(16)/A250033(16) = 280817/480480 = 0.58445... . - Amiram Eldar, Nov 30 2024

Examples

			1 is a term because gcd(1,0) = 1.
2 is not a term because gcd(2,0) = 2.
129 is a term because 129 is coprime to floor(129/16) = 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[120],CoprimeQ[#,Floor[#/16]]&] (* Harvey P. Dale, Mar 12 2023 *)
  • PARI
    a=vector(20000);
    i=n=0; while(i++, if(gcd(i, i\16)==1, a[n++]=i; if(n==#a, break))); a

Formula

gcd(a(n),floor(a(n)/16)) = 1.

A248502 Numbers m that are not coprime to floor(m/16).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 54, 57, 60, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 85, 90, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 119, 126, 128, 130, 132, 134, 136, 138, 140, 142
Offset: 1

Views

Author

Stanislav Sykora, Oct 07 2014

Keywords

Comments

Definition of 'being coprime' and special-case conventions are as in Wikipedia. In particular, when m < 16 then floor(m/16) = 0, and zero is coprime only to 1. The complementary sequence is A248501.
The asymptotic density of this sequence is 1 - A250031(16)/A250033(16) = 199663/480480 = 0.415549... . - Amiram Eldar, Nov 30 2024

Examples

			2 is a term because gcd(2,0) = 2 > 1.
21 is not a term because floor(21/16) = 1 and 1 is coprime to any number.
200 is a term because floor(200/16) = 12 and gcd(200,12) = 4 > 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[150], !CoprimeQ[#, Floor[#/16]] &] (* Amiram Eldar, Nov 30 2024 *)
  • PARI
    a=vector(20000);
    i=n=0; while(i++, if(gcd(i, i\16)!=1, a[n++]=i; if(n==#a, break))); a

Formula

gcd(a(n),floor(a(n)/16)) > 1.

A250032 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))>1.

Original entry on oeis.org

1, 1, 1, 11, 7, 19, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 919889, 2009948, 38444267, 41354174, 43432679, 46078049, 266161243, 379669754, 387106183, 407127338, 1258564159, 1322304979, 19229195413, 40830611677, 634491904301, 2638247862269, 2717256540199, 2823435623209, 2886468920107, 1006725304509
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

Let m be any natural number, and P(m) a relational expression on m (i.e., a property of m) evaluating to either 0 (false) or 1 (true). This defines a subset S of natural numbers N for which P(m)=1. When there exists a limit d=limit(M->infinity, Sum(m=1..M, P(m))/M), d is said to be the limit mean density (or just density) of the subset S in N. Now, choose an integer parameter n and set P(m)=gcd(m,floor(m/n))>1. This makes the property P, the corresponding subset S, and the density d all dependent upon n. The reference proves that for any n>0, the density d(n) exists and is a rational number. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=1, S includes all natural numbers except 1, so d(1)=1. Hence a(1)=1 and A250033(1)=1.
When n=2, S includes all even numbers greater than 2, so d(2)=1/2. Hence a(2)=1 and A250033(2)=2.
When n=10, the subset S is A248500 and d(10)=877/2100. Hence a(10)=877 and A250033(10)=2100.
When n=16, S is A248502 and d(16)=199663/480480. Hence a(16)=199663 and A250033(16)=480480.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n-1)/n))

Formula

For n>1, a(n)/A250033(n) = s(n-1)/n, where s(n) = A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1-1/zeta(2) = A229099.

A250034 Numerators a(n) of the rational-valued function s(n) defined below.

Original entry on oeis.org

1, 3, 11, 7, 38, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 1839778, 2009948, 38444267, 41354174, 43432679, 46078049, 1064644972, 379669754, 387106183, 407127338, 1258564159, 1322304979, 38458390826, 40830611677, 1268983808602
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

a(n) is the numerator (after normalization) of the rational function s(n) = 1-sum(k>0,(-1)^k*sum(p1A072155 (tested up to n=10000). For more information, see also A250031 and A250032.

Examples

			n=4: s(4) = 1 - (-1)*(floor(4/2)/2 + floor(4/3)/3)    = 1 + 1 + 1/3  = 7/3, with a(4) = 7 and 3 is indeed A072155(4). - _Wolfdieter Lang_, Dec 02 2014
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n)))
Showing 1-7 of 7 results.