cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A250031 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))=1.

Original entry on oeis.org

0, 1, 1, 13, 8, 26, 19, 163, 361, 1223, 1307, 16477, 5749, 83977, 88267, 280817, 147916, 1377406, 2839897, 58552633, 60492571, 63263911, 65468386, 403117367, 549883871, 579629587, 596790577, 1864736021, 1912541636, 29293503812, 59449633388, 969992016739
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

For introduction, see the comments in A250032. The present sequence is obtained when the condition P(m) is identified, for each chosen n>0, with the equality gcd(m,floor(m/n))=1, i.e., P(m)=1 when the equality holds, while P(m)=0 when it does not. Again, the densities d(n) exist and are rational numbers. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=10, the density of numbers m that are coprime to floor(m/10) turns out to be 1223/2100. Hence a(10) = 1223/2100.
When n=2, all odd numbers qualify, but only the m=2 among even numbers does; hence the density is 1/2 and therefore a(2)=1.
When n=1, only m=1 qualifies, so that the density is 0, and a(1) = 0.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(1-s(n-1)/n))

Formula

For n>1, a(n)=A250033(n)-A250032(n), and a(n)/A250033(n)=1-s(n-1)/n, where s(n) A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1/zeta(2) = A059956.

A071708 Numerator of Sum_{k=1..n} phi(k)/k.

Original entry on oeis.org

1, 3, 13, 8, 52, 19, 163, 361, 1223, 1307, 16477, 5749, 83977, 88267, 280817, 147916, 2754812, 2839897, 58552633, 60492571, 63263911, 65468386, 1612469468, 549883871, 579629587, 596790577, 1864736021, 1912541636, 58587007624, 59449633388, 1939984033478
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3/2, 13/6, 8/3, 52/15, 19/5, 163/35, 361/70, 1223/210, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.24, page 27.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.

Crossrefs

Cf. A072155 (denominators), A000010, A059956.

Programs

  • GAP
    List([1..35], n-> NumeratorRat( Sum([1..n], k-> Phi(k)/k) ) ); # G. C. Greubel, Aug 25 2019
  • Magma
    [Numerator( &+[EulerPhi(k)/k: k in [1..n]] ): n in [1..35]]; // G. C. Greubel, Aug 25 2019
    
  • Maple
    with(numtheory); seq(numer(add(phi(k)/k, k = 1..n)), n = 1..35); # G. C. Greubel, Aug 25 2019
  • Mathematica
    Table[Sum[EulerPhi[k]/k, {k, n}], {n,35}]//Numerator (* G. C. Greubel, Aug 25 2019 *)
  • PARI
    a(n) = numerator(sum(k=1,n, eulerphi(k)/k));
    vector(35, n, a(n)) \\ G. C. Greubel, Aug 25 2019
    
  • Sage
    [numerator( sum(euler_phi(k)/k for k in (1..n)) ) for n in (1..35)] # G. C. Greubel, Aug 25 2019
    

Formula

Also numerator of Sum_{i=1..n} (mu(i)/i)*floor(n/i). - Ridouane Oudra, Nov 26 2019
a(n)/A072155(n) ~ (6/Pi^2) * n + O(log(n)^(2/3)*log(log(n))^(4/3)). - Amiram Eldar, Sep 18 2022

A250032 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))>1.

Original entry on oeis.org

1, 1, 1, 11, 7, 19, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 919889, 2009948, 38444267, 41354174, 43432679, 46078049, 266161243, 379669754, 387106183, 407127338, 1258564159, 1322304979, 19229195413, 40830611677, 634491904301, 2638247862269, 2717256540199, 2823435623209, 2886468920107, 1006725304509
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

Let m be any natural number, and P(m) a relational expression on m (i.e., a property of m) evaluating to either 0 (false) or 1 (true). This defines a subset S of natural numbers N for which P(m)=1. When there exists a limit d=limit(M->infinity, Sum(m=1..M, P(m))/M), d is said to be the limit mean density (or just density) of the subset S in N. Now, choose an integer parameter n and set P(m)=gcd(m,floor(m/n))>1. This makes the property P, the corresponding subset S, and the density d all dependent upon n. The reference proves that for any n>0, the density d(n) exists and is a rational number. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=1, S includes all natural numbers except 1, so d(1)=1. Hence a(1)=1 and A250033(1)=1.
When n=2, S includes all even numbers greater than 2, so d(2)=1/2. Hence a(2)=1 and A250033(2)=2.
When n=10, the subset S is A248500 and d(10)=877/2100. Hence a(10)=877 and A250033(10)=2100.
When n=16, S is A248502 and d(16)=199663/480480. Hence a(16)=199663 and A250033(16)=480480.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n-1)/n))

Formula

For n>1, a(n)/A250033(n) = s(n-1)/n, where s(n) = A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1-1/zeta(2) = A229099.

A250034 Numerators a(n) of the rational-valued function s(n) defined below.

Original entry on oeis.org

1, 3, 11, 7, 38, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 1839778, 2009948, 38444267, 41354174, 43432679, 46078049, 1064644972, 379669754, 387106183, 407127338, 1258564159, 1322304979, 38458390826, 40830611677, 1268983808602
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

a(n) is the numerator (after normalization) of the rational function s(n) = 1-sum(k>0,(-1)^k*sum(p1A072155 (tested up to n=10000). For more information, see also A250031 and A250032.

Examples

			n=4: s(4) = 1 - (-1)*(floor(4/2)/2 + floor(4/3)/3)    = 1 + 1 + 1/3  = 7/3, with a(4) = 7 and 3 is indeed A072155(4). - _Wolfdieter Lang_, Dec 02 2014
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n)))

A333695 Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)).

Original entry on oeis.org

1, 3, 7, 11, 21, 7, 43, 43, 61, 63, 111, 77, 157, 129, 49, 171, 273, 61, 343, 231, 43, 333, 507, 301, 521, 471, 547, 473, 813, 147, 931, 683, 259, 819, 129, 671, 1333, 1029, 1099, 903, 1641, 43, 1807, 111, 427, 1521, 2163, 399, 2101, 1563, 637, 1727, 2757, 547, 2331
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2020

Keywords

Examples

			1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
    Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 55}] // Numerator
    Table[Sum[1/GCD[n, k], {k, n}], {n, 55}] // Numerator
    Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 55}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, eulerphi(n/d) / d)); \\ Michel Marcus, Apr 03 2020

Formula

a(n) = numerator of Sum_{d|n} phi(n/d) / d.
a(n) = numerator of Sum_{k=1..n} 1 / gcd(n,k).
a(n) = numerator of sigma_2(n^2) / (n * sigma_1(n^2)).
a(p) = p^2 - p + 1 where p is prime.
From Amiram Eldar, Nov 21 2022: (Start)
a(n) = numerator(A057660(n)/n).
Sum_{k=1..n} a(k)/A333696(k) ~ c * n^2, where c = zeta(3)/(2*zeta(2)) = 0.365381... (A346602). (End)

A333696 Denominators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 10, 11, 12, 13, 14, 5, 16, 17, 6, 19, 20, 3, 22, 23, 24, 25, 26, 27, 28, 29, 10, 31, 32, 11, 34, 5, 36, 37, 38, 39, 40, 41, 2, 43, 4, 15, 46, 47, 16, 49, 50, 17, 52, 53, 18, 55, 56, 57, 58, 59, 20, 61, 62, 63, 64, 65, 22, 67, 68, 23, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2020

Keywords

Examples

			1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
    Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 70}] // Denominator
    Table[Sum[1/GCD[n, k], {k, n}], {n, 70}] // Denominator
    Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 70}] // Denominator
  • PARI
    a(n) = denominator(sumdiv(n, d, eulerphi(n/d) / d)); \\ Michel Marcus, Apr 03 2020

Formula

a(n) = denominator of Sum_{d|n} phi(n/d) / d.
a(n) = denominator of Sum_{k=1..n} 1 / gcd(n,k).
a(n) = denominator of sigma_2(n^2) / (n * sigma_1(n^2)).

A385561 Numbers m such that (1/m) * Sum_{k=1..m} phi(k)/k is closer to 6/Pi^2 than it is for any number smaller than m, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 16, 22, 28, 36, 66, 96, 100, 126, 156, 190, 330, 430, 540, 820, 876, 1086, 1422, 10596, 10836, 18096, 35796, 55786, 69336, 111100, 168666, 284650, 905950, 1482300, 1745590, 2405560, 2661310, 4023306, 5869956, 17454580, 25670646, 51305346, 79969618, 211025650, 622626790
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Comments

6/Pi^2 is the asymptotic mean of phi(k)/k, i.e., lim_{m->oo} (1/m) * Sum_{k=1..m} phi(k)/k = 6/Pi^2 (Walfisz, 1963; Sándor et al., 2005).

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 27.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{s = {}, sum = 0, dm = 1, d}, Do[sum += EulerPhi[k]/k; If[(d = Abs[sum/k - 6/Pi^2]) < dm, dm = d; AppendTo[s, k]], {k, 1, lim}]; s]; seq[10^5]
  • PARI
    list(lim) = {my(sm = 0, dm = 1, d); for(k = 1, lim, sm += eulerphi(k)/k; d = abs(sm/k - 6/Pi^2); if(d < dm, dm = d; print1(k, ", ")));}
Showing 1-7 of 7 results.