cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333695 Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)).

Original entry on oeis.org

1, 3, 7, 11, 21, 7, 43, 43, 61, 63, 111, 77, 157, 129, 49, 171, 273, 61, 343, 231, 43, 333, 507, 301, 521, 471, 547, 473, 813, 147, 931, 683, 259, 819, 129, 671, 1333, 1029, 1099, 903, 1641, 43, 1807, 111, 427, 1521, 2163, 399, 2101, 1563, 637, 1727, 2757, 547, 2331
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2020

Keywords

Examples

			1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
    Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 55}] // Numerator
    Table[Sum[1/GCD[n, k], {k, n}], {n, 55}] // Numerator
    Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 55}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, eulerphi(n/d) / d)); \\ Michel Marcus, Apr 03 2020

Formula

a(n) = numerator of Sum_{d|n} phi(n/d) / d.
a(n) = numerator of Sum_{k=1..n} 1 / gcd(n,k).
a(n) = numerator of sigma_2(n^2) / (n * sigma_1(n^2)).
a(p) = p^2 - p + 1 where p is prime.
From Amiram Eldar, Nov 21 2022: (Start)
a(n) = numerator(A057660(n)/n).
Sum_{k=1..n} a(k)/A333696(k) ~ c * n^2, where c = zeta(3)/(2*zeta(2)) = 0.365381... (A346602). (End)
Showing 1-1 of 1 results.