cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072155 Denominator of Sum_{k=1..n} phi(k)/k.

Original entry on oeis.org

1, 2, 6, 3, 15, 5, 35, 70, 210, 210, 2310, 770, 10010, 10010, 30030, 15015, 255255, 255255, 4849845, 4849845, 4849845, 4849845, 111546435, 37182145, 37182145, 37182145, 111546435, 111546435, 3234846615, 3234846615, 100280245065, 200560490130, 200560490130
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3/2, 13/6, 8/3, 52/15, 19/5, 163/35, 361/70, 1223/210, ...
		

Crossrefs

Cf. A071708 (numerators), A250031, A250032, A250034.

Programs

  • GAP
    List([1..35], n-> DenominatorRat( Sum([1..n], k-> Phi(k)/k) ) ); # G. C. Greubel, Aug 25 2019
  • Magma
    [Denominator( &+[EulerPhi(k)/k: k in [1..n]] ): n in [1..35]]; // G. C. Greubel, Aug 25 2019
    
  • Maple
    with(numtheory); seq(denom( add(phi(k)/k, k=1..n)), n =1..35); # G. C. Greubel, Aug 25 2019
  • Mathematica
    Table[Sum[EulerPhi[k]/k,{k,n}],{n,40}]//Denominator (* Harvey P. Dale, Jun 08 2017 *)
  • PARI
    a(n) = denominator(sum(k=1, n, eulerphi(k)/k)); \\ Michel Marcus, Jan 26 2015
    
  • Sage
    [denominator( sum(euler_phi(k)/k for k in (1..n)) ) for n in (1..35)] # G. C. Greubel, Aug 25 2019
    

Formula

Also denominator of Sum_{i=1..n} (mu(i)/i)*floor(n/i). - Ridouane Oudra, Nov 26 2019

A250031 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))=1.

Original entry on oeis.org

0, 1, 1, 13, 8, 26, 19, 163, 361, 1223, 1307, 16477, 5749, 83977, 88267, 280817, 147916, 1377406, 2839897, 58552633, 60492571, 63263911, 65468386, 403117367, 549883871, 579629587, 596790577, 1864736021, 1912541636, 29293503812, 59449633388, 969992016739
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

For introduction, see the comments in A250032. The present sequence is obtained when the condition P(m) is identified, for each chosen n>0, with the equality gcd(m,floor(m/n))=1, i.e., P(m)=1 when the equality holds, while P(m)=0 when it does not. Again, the densities d(n) exist and are rational numbers. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=10, the density of numbers m that are coprime to floor(m/10) turns out to be 1223/2100. Hence a(10) = 1223/2100.
When n=2, all odd numbers qualify, but only the m=2 among even numbers does; hence the density is 1/2 and therefore a(2)=1.
When n=1, only m=1 qualifies, so that the density is 0, and a(1) = 0.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(1-s(n-1)/n))

Formula

For n>1, a(n)=A250033(n)-A250032(n), and a(n)/A250033(n)=1-s(n-1)/n, where s(n) A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1/zeta(2) = A059956.

A250032 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))>1.

Original entry on oeis.org

1, 1, 1, 11, 7, 19, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 919889, 2009948, 38444267, 41354174, 43432679, 46078049, 266161243, 379669754, 387106183, 407127338, 1258564159, 1322304979, 19229195413, 40830611677, 634491904301, 2638247862269, 2717256540199, 2823435623209, 2886468920107, 1006725304509
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

Let m be any natural number, and P(m) a relational expression on m (i.e., a property of m) evaluating to either 0 (false) or 1 (true). This defines a subset S of natural numbers N for which P(m)=1. When there exists a limit d=limit(M->infinity, Sum(m=1..M, P(m))/M), d is said to be the limit mean density (or just density) of the subset S in N. Now, choose an integer parameter n and set P(m)=gcd(m,floor(m/n))>1. This makes the property P, the corresponding subset S, and the density d all dependent upon n. The reference proves that for any n>0, the density d(n) exists and is a rational number. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=1, S includes all natural numbers except 1, so d(1)=1. Hence a(1)=1 and A250033(1)=1.
When n=2, S includes all even numbers greater than 2, so d(2)=1/2. Hence a(2)=1 and A250033(2)=2.
When n=10, the subset S is A248500 and d(10)=877/2100. Hence a(10)=877 and A250033(10)=2100.
When n=16, S is A248502 and d(16)=199663/480480. Hence a(16)=199663 and A250033(16)=480480.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n-1)/n))

Formula

For n>1, a(n)/A250033(n) = s(n-1)/n, where s(n) = A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1-1/zeta(2) = A229099.
Showing 1-3 of 3 results.