A250070 Smallest number k such that the symmetric representation of sigma(k) has at least one part of width n.
1, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440, 3160080, 2827440, 2162160, 2882880, 3603600, 5765760, 5654880, 4324320, 9979200
Offset: 1
Keywords
Examples
a(3) = 60 since the symmetric representation of sigma(60) = 168 consists of a single region of whose successive widths are 41 1's, 9 2's, 6 3's, 7 2's, 6 3's, 9 2's, and 41 1's. a(6) = 840 has a single extent of 12 units of width 6 centered around point (583,583) on the diagonal, but is not unimodal. - _Hartmut F. W. Hoft_, Jun 10 2024
Links
- Hartmut F. W. Hoft, Table of n, a(n) for n = 1..48
Crossrefs
Programs
-
Mathematica
(* function a2[ ] is defined in A249223 *) a250070[{j_, k_}, b_] := Module[{i, max, acc={{1, 1}}}, For[i=j, i<=k, i++, max={Max[a2[i]], i}; If[max[[1]]>b && !MemberQ[Transpose[acc][[1]], max[[1]]], AppendTo[acc,max]]]; acc] (* returns (argument,result) data pairs since sequence is non-monotonic *) Sort[a250070[{1, 1000000}, 1]] (* computed in steps *)
Formula
a(n) = min(k such that A250068(k) = n), n >= 1.
Extensions
a(28)-a(48) from Hartmut F. W. Hoft, Jun 10 2024
Comments