A250094 Positive integers k such that the numerator of the harmonic mean of the divisors of k is equal to k.
1, 3, 5, 7, 11, 13, 17, 19, 20, 21, 22, 23, 27, 29, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 53, 55, 56, 57, 59, 61, 65, 67, 68, 71, 73, 77, 79, 83, 85, 86, 89, 93, 97, 99, 101, 103, 107, 109, 110, 111, 113, 115, 116, 118, 119, 125, 127, 129, 131, 133, 134
Offset: 1
Keywords
Examples
20 is a term because the divisors of 20 are [1,2,4,5,10,20] and 6 / (1/1 + 1/2 + 1/4 + 1/5 + 1/10 + 1/20) = 20/7.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Colin Barker)
Programs
-
Mathematica
Select[Range[200],Numerator[HarmonicMean[Divisors[#]]]==#&] (* Harvey P. Dale, May 24 2017 *) Select[Range[134], Numerator[DivisorSigma[0, #] * #/DivisorSigma[1, #]] == # &] (* Amiram Eldar, Mar 02 2020 *)
-
PARI
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k]) s=[]; for(n=1, 500, if(numerator(harmonicmean(divisors(n)))==n, s=concat(s, n))); s
Comments