A250095 Positive integers k such that the numerator of the harmonic mean of the proper divisors of k is equal to k.
4, 27, 28, 54, 56, 64, 68, 91, 99, 100, 133, 138, 148, 154, 165, 188, 217, 222, 247, 259, 268, 276, 279, 290, 301, 308, 369, 375, 388, 403, 414, 427, 428, 430, 469, 474, 481, 508, 511, 540, 544, 548, 549, 553, 559, 589, 609, 621, 627, 628, 639, 642, 665, 668
Offset: 1
Keywords
Examples
27 is a term because the proper divisors of 27 are [1,3,9] and 3 / (1/1 + 1/3 + 1/9) = 27/13.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Colin Barker)
Programs
-
Mathematica
Select[Range[668], CompositeQ[#] && Numerator[(DivisorSigma[0, #] - 1) * #/(DivisorSigma[1, #] - 1)] == # &] (* Amiram Eldar, Mar 02 2020 *)
-
PARI
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k]) properdivisors(n) = d=divisors(n); vector(#d-1, k, d[k]) s=[]; for(n=2, 1000, if(numerator(harmonicmean(properdivisors(n)))==n, s=concat(s, n))); s