cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A250094 Positive integers k such that the numerator of the harmonic mean of the divisors of k is equal to k.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 20, 21, 22, 23, 27, 29, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 53, 55, 56, 57, 59, 61, 65, 67, 68, 71, 73, 77, 79, 83, 85, 86, 89, 93, 97, 99, 101, 103, 107, 109, 110, 111, 113, 115, 116, 118, 119, 125, 127, 129, 131, 133, 134
Offset: 1

Views

Author

Colin Barker, Nov 12 2014

Keywords

Comments

A subsequence of A099377: n such that A099377(n) = n.
All odd primes are in this sequence.

Examples

			20 is a term because the divisors of 20 are [1,2,4,5,10,20] and 6 / (1/1 + 1/2 + 1/4 + 1/5 + 1/10 + 1/20) = 20/7.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],Numerator[HarmonicMean[Divisors[#]]]==#&] (* Harvey P. Dale, May 24 2017 *)
    Select[Range[134], Numerator[DivisorSigma[0, #] * #/DivisorSigma[1, #]] == # &] (* Amiram Eldar, Mar 02 2020 *)
  • PARI
    harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
    s=[]; for(n=1, 500, if(numerator(harmonicmean(divisors(n)))==n, s=concat(s, n))); s

A247081 Positive integers k such that the numerator of the harmonic mean of the nontrivial divisors of k is equal to k.

Original entry on oeis.org

8, 15, 18, 21, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 77, 81, 85, 87, 91, 93, 95, 99, 111, 115, 117, 119, 123, 128, 129, 133, 141, 143, 145, 147, 153, 155, 159, 161, 162, 171, 175, 177, 183, 185, 187, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221, 235
Offset: 1

Views

Author

Colin Barker, Nov 17 2014

Keywords

Comments

No primes are in this sequence.

Examples

			18 is a term because the nontrivial divisors of 18 are [2,3,6,9] and 4 / (1/2 + 1/3 + 1/6 + 1/9) = 18/5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[235], CompositeQ[#] && Numerator[(DivisorSigma[0, #] - 2) * #/(DivisorSigma[1, #] - # -1)] == # &] (* Amiram Eldar, Mar 02 2020 *)
  • PARI
    harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
    nontrivialdivisors(n) = d=divisors(n); vector(#d-2, k, d[k+1])
    s=[]; for(n=2, 500, t=nontrivialdivisors(n); if(#t>0 && numerator(harmonicmean(t))==n, s=concat(s, n))); s
Showing 1-2 of 2 results.