cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250104 Triangle read by rows: T(n,k) = number of partitions of n with k circular successions (n>=0, 0 <= k <= n).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2014

Keywords

Examples

			Triangle begins:
0
1, 0,
1, 0, 1,
1, 3, 0, 1,
4, 4, 6, 0, 1,
11, 20, 10, 10, 0, 1,
41, 66, 60, 20, 15, 0, 1,
162, 287, 231, 140, 35, 21, 0, 1,
715, 1296, 1148, 616, 280, 56, 28, 0, 1,
3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1,
17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
...
		

Crossrefs

A124323 is an essentially identical triangle, differing only in row 0 and 1.
For columns see A000296, A250105 - A250107.

Programs

  • Mathematica
    t[n_, k_] := Binomial[n, k]*((-1)^(n-k)+Sum[(-1)^(j-1)*BellB[n-k-j], {j, 1, n-k}]); t[0, 0]=0; t[1, 0]=1; t[1, 1]=0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2014 *)