Original entry on oeis.org
0, 0, 3, 4, 20, 66, 287, 1296, 6435, 34250, 194942, 1179036, 7544121, 50865920, 360167355, 2670210640, 20673196460, 166753291806, 1398415162703, 12169520162440, 109709590135635, 1022997624845614, 9852508254721222, 97880299543896216, 1001841501018883425
Offset: 1
-
a[n_] := n*(Sum[(-1)^(j-1)*BellB[n-j-1], {j, 1, n-1}]-(-1)^n); a[1] = 0; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Dec 09 2014 *)
Original entry on oeis.org
1, 0, 10, 20, 140, 616, 3444, 19440, 117975, 753500, 5068492, 35764092, 264044235, 2034636800, 16327586760, 136180742640, 1178372198220, 10561041814380, 97889061389210, 937053052507880, 9252175434771885, 94115781485796488, 985250825472122200
Offset: 3
-
A250107 := proc(n)
A124323(n,3) ;
end proc:
seq(A250107(n),n=3..50) ; # R. J. Mathar, Jan 22 2015
-
t[0, 0] = 0; t[1, 0] = 1; t[1, 1] = 0;
t[n_, k_] := Binomial[n, k] ((-1)^(n-k) + Sum[(-1)^(j-1) BellB[n-k-j], {j, 1, n-k}]);
Table[t[n, 3], {n, 3, 25}] (* Jean-François Alcover, Mar 30 2020 *)
Original entry on oeis.org
1, 0, 6, 10, 60, 231, 1148, 5832, 32175, 188375, 1169652, 7663734, 52808847, 381494400, 2881338840, 22696790440, 186058768140, 1584156272157, 13984151627030, 127779961705620, 1206805491491985, 11764472685724561, 118230099056654664
Offset: 2
-
A250106 := proc(n)
A124323(n,2) ;
end proc:
seq(A250106(n),n=2..50) ; # R. J. Mathar, Jan 22 2015
-
t[n_, k_] := Binomial[n, k] ((-1)^(n-k) + Sum[(-1)^(j-1) BellB[n-k-j], {j, 1, n-k}]);
Table[t[n, 2], {n, 2, 24}] (* Jean-François Alcover, Apr 03 2020 *)
A124323
Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0
T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
1
0 1
1 0 1
1 3 0 1
4 4 6 0 1
11 20 10 10 0 1
41 66 60 20 15 0 1
162 287 231 140 35 21 0 1
715 1296 1148 616 280 56 28 0 1
3425 6435 5832 3444 1386 504 84 36 0 1
From _Gus Wiseman_, Feb 13 2019: (Start)
Row n = 5 counts the following set partitions by number of singletons:
{{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{12}{34}} {{123}{4}} {{1}{23}{4}}
{{13}{24}} {{124}{3}} {{12}{3}{4}}
{{14}{23}} {{134}{2}} {{1}{24}{3}}
{{13}{2}{4}}
{{14}{2}{3}}
... and the following set partitions by number of cyclical adjacencies:
{{13}{24}} {{1}{2}{34}} {{1}{234}} {{1234}}
{{1}{24}{3}} {{1}{23}{4}} {{12}{34}}
{{13}{2}{4}} {{12}{3}{4}} {{123}{4}}
{{1}{2}{3}{4}} {{14}{2}{3}} {{124}{3}}
{{134}{2}}
{{14}{23}}
(End)
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
0, 1,
1, 0, 1,
1, 2, 0, 1,
1, 3, 3, 0, 1,
1, 4, 6, 4, 0, 1,
1, 5, 10, 10, 5, 0, 1,
1, 6, 15, 20, 15, 6, 0, 1,
1, 7, 21, 35, 35, 21, 7, 0, 1,
1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
- Alois P. Heinz, Rows n = 0..140, flattened
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
A250104 is an essentially identical triangle, differing only in row 1.
Cf.
A000126,
A001610,
A032032,
A052841,
A066982,
A080107,
A169985,
A187784,
A324011,
A324014,
A324015.
-
G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form
# Program from R. J. Mathar, Jan 22 2015:
A124323 := proc(n,k)
binomial(n,k)*A000296(n-k) ;
end proc:
-
Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)
Showing 1-4 of 4 results.
Comments