cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124323 Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2006

Keywords

Comments

Row sums are the Bell numbers (A000110). T(n,0)=A000296(n). T(n,k) = binomial(n,k)*T(n-k,0). Sum(k*T(n,k),k=0..n) = A052889(n) = n*B(n-1), where B(q) are the Bell numbers (A000110).
Exponential Riordan array [exp(exp(x)-1-x),x]. - Paul Barry, Apr 23 2009
Sum_{k=0..n} T(n,k)*2^k = A000110(n+1) is the number of binary relations on an n-set that are both symmetric and transitive. - Geoffrey Critzer, Jul 25 2014
Also the number of set partitions of {1, ..., n} with k cyclical adjacencies (successive elements in the same block, where 1 is a successor of n). Unlike A250104, we count {{1}} as having 1 cyclical adjacency. - Gus Wiseman, Feb 13 2019

Examples

			T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
     1
     0    1
     1    0    1
     1    3    0    1
     4    4    6    0    1
    11   20   10   10    0    1
    41   66   60   20   15    0    1
   162  287  231  140   35   21    0    1
   715 1296 1148  616  280   56   28    0    1
  3425 6435 5832 3444 1386  504   84   36    0    1
From _Gus Wiseman_, Feb 13 2019: (Start)
Row n = 5 counts the following set partitions by number of singletons:
  {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
  {{12}{34}}  {{123}{4}}  {{1}{23}{4}}
  {{13}{24}}  {{124}{3}}  {{12}{3}{4}}
  {{14}{23}}  {{134}{2}}  {{1}{24}{3}}
                          {{13}{2}{4}}
                          {{14}{2}{3}}
... and the following set partitions by number of cyclical adjacencies:
  {{13}{24}}      {{1}{2}{34}}  {{1}{234}}  {{1234}}
  {{1}{24}{3}}    {{1}{23}{4}}  {{12}{34}}
  {{13}{2}{4}}    {{12}{3}{4}}  {{123}{4}}
  {{1}{2}{3}{4}}  {{14}{2}{3}}  {{124}{3}}
                                {{134}{2}}
                                {{14}{23}}
(End)
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
0, 1,
1, 0, 1,
1, 2, 0, 1,
1, 3, 3, 0, 1,
1, 4, 6, 4, 0, 1,
1, 5, 10, 10, 5, 0, 1,
1, 6, 15, 20, 15, 6, 0, 1,
1, 7, 21, 35, 35, 21, 7, 0, 1,
1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
		

Crossrefs

A250104 is an essentially identical triangle, differing only in row 1.
For columns see A000296, A250105, A250106, A250107.

Programs

  • Maple
    G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form
    # Program from R. J. Mathar, Jan 22 2015:
    A124323 := proc(n,k)
        binomial(n,k)*A000296(n-k) ;
    end proc:
  • Mathematica
    Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)

Formula

T(n,k) = binomial(n,k)*[(-1)^(n-k)+sum((-1)^(j-1)*B(n-k-j), j=1..n-k)], where B(q) are the Bell numbers (A000110).
E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)*z).
G.f.: 1/(1-xy-x^2/(1-xy-x-2x^2/(1-xy-2x-3x^2/(1-xy-3x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009

A250104 Triangle read by rows: T(n,k) = number of partitions of n with k circular successions (n>=0, 0 <= k <= n).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2014

Keywords

Examples

			Triangle begins:
0
1, 0,
1, 0, 1,
1, 3, 0, 1,
4, 4, 6, 0, 1,
11, 20, 10, 10, 0, 1,
41, 66, 60, 20, 15, 0, 1,
162, 287, 231, 140, 35, 21, 0, 1,
715, 1296, 1148, 616, 280, 56, 28, 0, 1,
3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1,
17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
...
		

Crossrefs

A124323 is an essentially identical triangle, differing only in row 0 and 1.
For columns see A000296, A250105 - A250107.

Programs

  • Mathematica
    t[n_, k_] := Binomial[n, k]*((-1)^(n-k)+Sum[(-1)^(j-1)*BellB[n-k-j], {j, 1, n-k}]); t[0, 0]=0; t[1, 0]=1; t[1, 1]=0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2014 *)

A348590 Number of endofunctions on [n] with exactly one isolated fixed point.

Original entry on oeis.org

0, 1, 0, 9, 68, 845, 12474, 218827, 4435864, 102030777, 2625176150, 74701061831, 2329237613988, 78972674630005, 2892636060014050, 113828236497224355, 4789121681108775344, 214528601554419809777, 10193616586275094959534, 512100888749268955942015
Offset: 0

Views

Author

Alois P. Heinz, Dec 20 2021

Keywords

Examples

			a(3) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
		

Crossrefs

Column k=1 of A350212.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
          b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1+t..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}] ;
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
         b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1 + t, n}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)

Formula

a(n) mod 2 = A000035(n).
Showing 1-3 of 3 results.