A250123 Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.
1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Offset: 0
Keywords
References
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.
Links
- Joseph Myers, Table of n, a(n) for n = 0..1000
- Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, Ball Packings with Periodic Constraints, arXiv:1301.0664 [math.MG], 2013.
- Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, Ball Packings with Periodic Constraints, Discrete Comput. Geom. 52 (2014), no. 4, 754--779. MR3279548.
- Brian Galebach, Tiling 132 (in list of 4-uniform tilings).
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- N. J. A. Sloane, A portion of the 3-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}. The four black dots labeled P,Q,R,S show the four types of point. The present sequence is for a point of type P.
- N. J. A. Sloane, Shows layers a(0)-a(6)
Crossrefs
Formula
Empirical g.f.: -(x+1)*(x^15 +3*x^14 -4*x^11 -6*x^10 -7*x^9 -4*x^8 -7*x^7 -11*x^6 -9*x^5 -7*x^4 -4*x^3 -4*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014
Extensions
Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014
Comments