cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250167 T(n,k)=Number of length n+1 0..k arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 3, 4, 4, 11, 8, 5, 20, 37, 16, 6, 33, 96, 119, 32, 7, 48, 211, 436, 373, 64, 8, 67, 380, 1269, 1880, 1151, 128, 9, 88, 639, 2860, 7109, 7836, 3517, 256, 10, 113, 976, 5831, 19896, 37881, 32032, 10679, 512, 11, 140, 1437, 10460, 49037, 129648, 195927
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Table starts
....2.....3.......4........5.........6..........7..........8...........9
....4....11......20.......33........48.........67.........88.........113
....8....37......96......211.......380........639........976........1437
...16...119.....436.....1269......2860.......5831......10460.......17765
...32...373....1880.....7109.....19896......49037.....103556......203615
...64..1151....7836....37881....129648.....380939.....938128.....2121089
..128..3517...32032...195927....810964....2810751....7989940....20567199
..256.10679..129572...996933...4962056...20169871...65768448...191480917
..512.32293..521256..5029417..30034672..142786013..532548628..1748028901
.1024.97391.2091052.25262121.180893724.1004527983.4281269376.15822382297

Examples

			Some solutions for n=5 k=4
..3....0....3....4....0....3....4....4....2....4....4....2....0....4....3....1
..2....0....4....2....0....4....1....4....4....1....3....1....1....2....1....1
..4....4....0....4....4....2....2....2....4....3....4....3....1....2....3....3
..0....2....0....1....2....1....3....2....1....0....3....2....3....1....0....4
..1....2....4....1....3....1....3....3....3....0....0....2....0....4....3....3
..1....0....3....2....0....1....2....4....0....4....0....2....0....2....3....1
		

Crossrefs

Column 1 is A000079
Column 2 is A084171
Row 2 is A212959

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 5*a(n-1) -6*a(n-2)
k=3: a(n) = 8*a(n-1) -21*a(n-2) +22*a(n-3) -8*a(n-4)
k=4: [order 8]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6); also a cubic polynomial plus a linear quasipolynomial with period 2
n=4: [order 12; also a quartic polynomial plus a quadratic quasipolynomial with period 12]
n=5: [order 24; also a polynomial of degree 5 plus a cubic quasipolynomialwith period 60]