cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A250197 Numbers k such that the left Aurifeuillian primitive part of 2^k+1 is prime.

Original entry on oeis.org

10, 14, 18, 22, 26, 30, 42, 54, 58, 66, 70, 86, 94, 98, 106, 110, 126, 130, 138, 146, 158, 174, 186, 210, 222, 226, 258, 302, 334, 434, 462, 478, 482, 522, 566, 602, 638, 706, 734, 750, 770, 782, 914, 1062, 1086, 1114, 1126, 1226, 1266, 1358, 1382, 1434, 1742, 1926
Offset: 1

Views

Author

Eric Chen, Jan 18 2015

Keywords

Comments

All terms are congruent to 2 modulo 4.
Phi_n(x) is the n-th cyclotomic polynomial.
Numbers n such that Phi_{2nL(n)}(2) is prime.
Let J(n) = 2^n+1, J*(n) = the primitive part of 2^n+1, this is Phi_{2n}(2).
Let L(n) = the Aurifeuillian L-part of 2^n+1, L(n) = 2^(n/2) - 2^((n+2)/4) + 1 for n congruent to 2 (mod 4).
Let L*(n) = GCD(L(n), J*(n)).
This sequence lists all n such that L*(n) is prime.

Examples

			14 is in this sequence because the left Aurifeuillian primitive part of 2^14+1 is 113, which is prime.
34 is not in this sequence because the left Aurifeuillian primitive part of 2^34+1 is 130561, which equals 137 * 953 and is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 4] == 2 && PrimeQ[GCD[2^(#/2) - 2^((#+2)/4) + 1, Cyclotomic[2*#, 2]]] &]
  • PARI
    isok(n) = isprime(gcd(2^(n/2) - 2^((n+2)/4) + 1, polcyclo(2*n, 2))); \\ Michel Marcus, Jan 27 2015
Showing 1-1 of 1 results.