cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A250205 Riesel problem in base 6: Least k > 0 such that n*6^k-1 is prime, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 1, 0, 2, 1, 1, 1, 0, 1, 1, 2, 2, 0, 4, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 4, 1, 3, 0, 1, 1, 6, 2, 0, 5, 1, 1, 1, 0, 6, 2, 1, 1, 0, 1, 2, 10, 1, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 1, 8, 1, 1, 0, 1, 2, 2, 4, 0, 49, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 1, 6, 2, 0, 1, 1, 1, 1, 0, 5, 1, 1, 2, 0, 1, 10, 2, 1
Offset: 1

Views

Author

Eric Chen, Mar 13 2015

Keywords

Comments

a(5j+1) = 0 except for a(1), since (5j+1)*6^k-1 is always divisible by 5, but there are infinitely many numbers not in the form 5j+1 such that a(n) = 0.
a(n) = 0 for n == 84687 mod 10124569, because then n*6^k-1 is always divisible by at least one of 7, 13, 31, 37, 97. - Robert Israel, Mar 17 2015
Conjecture: if n is not in the form 5j+1 and n < 84687, then a(n) > 0.

Crossrefs

Cf. A250204 (Least k > 0 such that n*6^k+1 is prime).

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N), using k up to 10000
    a[1]:= 1:
    for n from 2 to N do
    if n mod 5 = 1 then a[n]:= 0
    else
        for k from 1 to 10000 do
        if isprime(n*6^k-1) then
           a[n]:= k;
             break
          fi
        od
    fi
    od:
    seq(a[n],n=1..N); # Robert Israel, Mar 17 2015
  • Mathematica
    (* m <= 10000 is sufficient up to n = 1000 *)
    a[n_] := For[k = 1, k <= 10000, k++, If[PrimeQ[n*6^k - 1], Return[k]]] /. Null -> 0; Table[a[n], {n, 1, 120}]
  • PARI
    a(n) = if(n%5==1 && n>1, 0, for(k = 1, 10000, if(ispseudoprime(n*6^k-1), return(k))))

Formula

a(A024898(n)) = 1. - Michel Marcus, Mar 16 2015
Showing 1-1 of 1 results.