A250258 Least nonnegative integer whose decimal digits divide the plane into n regions (A250257 variant).
1, 0, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1
Examples
The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 68.
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 10, -10).
Programs
-
Magma
I:=[1,0,8,68,88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..40]]; // Vincenzo Librandi, Nov 16 2014
-
Mathematica
Join[{1, 0, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)
Formula
a(n) = 10*a(n-2) + 8 for n >= 5.
a(n) = A250256(n), n<>2.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-60*x^4 + 70*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)
Comments