A250259 The number of 4-alternating permutations of [n].
1, 1, 1, 2, 3, 4, 19, 78, 217, 496, 3961, 25442, 105963, 349504, 3908059, 34227438, 190065457, 819786496, 11785687921, 130746521282, 907546301523, 4835447317504, 84965187064099, 1141012634368398, 9504085749177097, 60283564499562496, 1251854782837499881
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240 [math.CO], 2009, page 17.
Crossrefs
Programs
-
Maple
onestep := proc(n::integer,ups::integer,downs::integer,uplen::integer) local thisstep,left,doup,tak,ret ; option remember; left := ups+downs ; if left = 0 then return 1; end if; thisstep := n-left+1 ; if modp(thisstep-2,uplen+1) = 0 then doup := false; else doup := true; end if; if doup then ret := 0 ; for tak from 1 to ups do ret := ret+procname(n,ups-tak,downs+tak-1,uplen) ; end do: return ret ; else ret := 0 ; for tak from 1 to downs do ret := ret+procname(n,ups+tak-1,downs-tak,uplen) ; end do: return ret ; end if; end proc: downupP := proc(n::integer,uplen::integer) local ret,tak; if n = 0 then return 1; end if; ret := 0 ; for tak from 1 to n do ret := ret+onestep(n,n-tak,tak-1,uplen) ; end do: return ret ; end proc: A250259 :=proc(n) downupP(n,3) ; end proc: seq(A250259(n),n=0..20) ; # R. J. Mathar, Nov 15 2014 # second Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 4)), j=1..u), add(b(u+j-1, o-j, irem(t+1, 4)), j=1..o))) end: a:= n-> b(0, n, 0): seq(a(n), n=0..35); # Alois P. Heinz, Nov 15 2014
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
Comments