cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A250261 Number A(n,k) of permutations p of [n] such that p(i) > p(i+1) iff i = 1 + k*m for some m >= 0; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 5, 1, 5, 1, 1, 1, 2, 3, 16, 1, 6, 1, 1, 1, 2, 3, 11, 61, 1, 7, 1, 1, 1, 2, 3, 4, 40, 272, 1, 8, 1, 1, 1, 2, 3, 4, 19, 99, 1385, 1, 9, 1, 1, 1, 2, 3, 4, 5, 78, 589, 7936, 1, 10, 1, 1, 1, 2, 3, 4, 5, 29, 217, 3194, 50521, 1, 11
Offset: 0

Views

Author

Alois P. Heinz, Nov 15 2014

Keywords

Comments

A(n,0) = A(n,k) for k>=n-1 and n>0.

Examples

			Square array A(n,k) begins:
  1, 1,    1,   1,   1,   1,  1, 1, 1, ...
  1, 1,    1,   1,   1,   1,  1, 1, 1, ...
  1, 1,    1,   1,   1,   1,  1, 1, 1, ...
  2, 1,    2,   2,   2,   2,  2, 2, 2, ...
  3, 1,    5,   3,   3,   3,  3, 3, 3, ...
  4, 1,   16,  11,   4,   4,  4, 4, 4, ...
  5, 1,   61,  40,  19,   5,  5, 5, 5, ...
  6, 1,  272,  99,  78,  29,  6, 6, 6, ...
  7, 1, 1385, 589, 217, 133, 41, 7, 7, ...
		

Crossrefs

A(n+3,n+1) = A028387(n).

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1,
         `if`(t=1, add(b(u-j, o+j-1, irem(t+1, k), k), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, k), k), j=1..o)))
        end:
    A:= (n, k)-> b(0, n, 0, `if`(k=0, n, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, If[t == 1, Sum[ b[u-j, o+j-1, Mod[t+1, k], k], {j, 1, u}], Sum[ b[u+j-1, o-j, Mod[t+1, k], k], {j, 1, o}] ] ] ; A[n_, k_] := b[0, n, 0, If[k == 0, n, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)

A250259 The number of 4-alternating permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 19, 78, 217, 496, 3961, 25442, 105963, 349504, 3908059, 34227438, 190065457, 819786496, 11785687921, 130746521282, 907546301523, 4835447317504, 84965187064099, 1141012634368398, 9504085749177097, 60283564499562496, 1251854782837499881
Offset: 0

Views

Author

R. J. Mathar, Nov 15 2014

Keywords

Comments

A sequence a(1),a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k).

Crossrefs

Cf. A249402 (3-alternating), A065619 (2-alternating), A250260 (5-alternating).
Column k=4 of A250261.

Programs

  • Maple
    onestep := proc(n::integer,ups::integer,downs::integer,uplen::integer)
        local thisstep,left,doup,tak,ret ;
        option remember;
        left := ups+downs ;
        if left = 0 then
            return 1;
        end if;
        thisstep := n-left+1 ;
        if modp(thisstep-2,uplen+1) = 0 then
            doup := false;
        else
            doup := true;
        end if;
        if doup then
            ret := 0 ;
            for tak from 1 to ups do
                ret := ret+procname(n,ups-tak,downs+tak-1,uplen) ;
            end do:
            return ret ;
        else
            ret := 0 ;
            for tak from 1 to downs do
                ret := ret+procname(n,ups+tak-1,downs-tak,uplen) ;
            end do:
            return ret ;
        end if;
    end proc:
    downupP := proc(n::integer,uplen::integer)
        local ret,tak;
        if n = 0 then
            return 1;
        end if;
        ret := 0 ;
        for tak from 1 to n do
            ret := ret+onestep(n,n-tak,tak-1,uplen) ;
        end do:
        return ret ;
    end proc:
    A250259 :=proc(n)
        downupP(n,3) ;
    end proc:
    seq(A250259(n),n=0..20) ; # R. J. Mathar, Nov 15 2014
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
         `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 4)), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, 4)), j=1..o)))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 15 2014
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
Showing 1-2 of 2 results.