A250263 Number of permutations p of [n] such that p(i) > p(i+1) iff i == 1 (mod 7).
1, 1, 1, 2, 3, 4, 5, 6, 7, 55, 306, 1145, 3454, 8997, 21008, 45031, 630421, 5954062, 36439007, 174011100, 697278853, 2442137774, 7677528495, 154507257827, 2060124800270, 17511127577941, 114431145225190, 619024078342189, 2890746049056048, 11979440405949527
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Column k=7 of A250261.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 7)), j=1..u), add(b(u+j-1, o-j, irem(t+1, 7)), j=1..o))) end: a:= n-> b(0, n, 0): seq(a(n), n=0..35);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 7]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 7]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 22 2019, after Alois P. Heinz *)