A250266 Number of permutations p of [n] such that p(i) > p(i+1) iff i == 1 (mod 10).
1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 109, 768, 3627, 13636, 43665, 123744, 318223, 755802, 1679581, 3527140, 70542781, 878845662, 7113969943, 44573747024, 231938007625, 1043938332476, 4176060103827, 15138650342428, 50462774778029, 156435448534980
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Column k=10 of A250261.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 10)), j=1..u), add(b(u+j-1, o-j, irem(t+1, 10)), j=1..o))) end: a:= n-> b(0, n, 0): seq(a(n), n=0..35);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 10]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 10]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 22 2019, after Alois P. Heinz *)