cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250277 T(n,k)=Number of length n+1 0..k arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 3, 4, 4, 11, 8, 5, 20, 27, 16, 6, 33, 52, 79, 32, 7, 48, 89, 240, 255, 64, 8, 67, 140, 581, 984, 843, 128, 9, 88, 207, 1132, 2909, 4412, 2763, 256, 10, 113, 288, 1991, 6732, 17885, 20252, 8903, 512, 11, 140, 389, 3156, 14003, 51884, 107387, 91808, 28215, 1024, 12
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Table starts
....2.....3.......4........5.........6.........7..........8...........9
....4....11......20.......33........48........67.........88.........113
....8....27......52.......89.......140.......207........288.........389
...16....79.....240......581......1132......1991.......3156........4841
...32...255.....984.....2909......6732.....14003......25964.......45303
...64...843....4412....17885.....51884....130335.....281552......564985
..128..2763...20252...107387....381812...1154141....2908232.....6704631
..256..8903...91808...636197...2783500..10172515...30143732....80256473
..512.28215..406748..3664311..19762916..86975297..301550620...925066871
.1024.88195.1759740.20397261.135821156.715749943.2901853512.10244309701

Examples

			Some solutions for n=6 k=4
..4....0....0....1....3....3....4....3....3....1....2....0....4....1....3....3
..2....2....0....1....1....3....2....3....2....4....3....3....4....3....2....4
..4....2....2....4....2....3....0....3....4....4....0....2....4....2....2....4
..2....1....4....4....1....3....4....1....2....1....2....4....2....3....1....2
..2....2....4....2....1....1....4....0....1....2....4....3....1....1....1....4
..2....3....2....1....1....3....2....1....2....1....3....4....2....1....0....0
..4....2....0....3....3....3....0....3....3....1....0....2....4....1....1....3
		

Crossrefs

Column 1 is A000079
Row 2 is A212959

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 9*a(n-1) -31*a(n-2) +51*a(n-3) -40*a(n-4) +12*a(n-5) for n>6
k=3: [order 15] for n>18
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2