A250286 Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 9).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 54, 219, 714, 2001, 5004, 11439, 24309, 48619, 831384, 9069651, 64369341, 355150566, 1635163542, 6542615421, 23369110326, 75953123676, 227864057851, 5742168041637, 90830731860000, 920922875075934, 7159714782188364
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Row n=9 of A181937.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 9)), j=1..u), add(b(u+j-1, o-j, irem(t+1, 9)), j=1..o))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..35);
-
Mathematica
nmax = 30; CoefficientList[Series[1 + Sum[(x^(9 - k) * HypergeometricPFQ[{1}, {10/9 - k/9, 11/9 - k/9, 4/3 - k/9, 13/9 - k/9, 14/9 - k/9, 5/3 - k/9, 16/9 - k/9, 17/9 - k/9, 2 - k/9}, -x^9/387420489])/(9 - k)!, {k, 0, 8}] / HypergeometricPFQ[{}, {1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9}, -x^9/387420489], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)