A250287 Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 10).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 65, 285, 1000, 3002, 8007, 19447, 43757, 92377, 184755, 3527140, 42031760, 326057040, 1961245375, 9812764391, 42530831916, 164059546366, 574224816166, 1850302218766, 5550936701311, 156435448534980, 2711548312208295
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Row n=10 of A181937.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 10)), j=1..u), add(b(u+j-1, o-j, irem(t+1, 10)), j=1..o))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..35);
-
Mathematica
nmax = 30; CoefficientList[Series[1 + Sum[(x^(10 - k) * HypergeometricPFQ[{1}, {11/10 - k/10, 6/5 - k/10, 13/10 - k/10, 7/5 - k/10, 3/2 - k/10, 8/5 - k/10, 17/10 - k/10, 9/5 - k/10, 19/10 - k/10, 2 - k/10}, -x^10/10000000000])/(10 - k)!, {k, 0, 9}] / HypergeometricPFQ[{}, {1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10}, -x^10/10000000000], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)