cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250287 Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 65, 285, 1000, 3002, 8007, 19447, 43757, 92377, 184755, 3527140, 42031760, 326057040, 1961245375, 9812764391, 42530831916, 164059546366, 574224816166, 1850302218766, 5550936701311, 156435448534980, 2711548312208295
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2014

Keywords

Crossrefs

Row n=10 of A181937.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
         `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 10)), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, 10)), j=1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..35);
  • Mathematica
    nmax = 30; CoefficientList[Series[1 + Sum[(x^(10 - k) * HypergeometricPFQ[{1}, {11/10 - k/10, 6/5 - k/10, 13/10 - k/10, 7/5 - k/10, 3/2 - k/10, 8/5 - k/10, 17/10 - k/10, 9/5 - k/10, 19/10 - k/10, 2 - k/10}, -x^10/10000000000])/(10 - k)!, {k, 0, 9}] / HypergeometricPFQ[{}, {1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10}, -x^10/10000000000], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)