cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250304 Four-column array read by rows: T(n,k) = the coefficient of x^k in the expanded polynomial x^3 + (x+1)^3 + ... + (x+n-1)^3, for 0 <= k <= 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 2, 9, 15, 9, 3, 36, 42, 18, 4, 100, 90, 30, 5, 225, 165, 45, 6, 441, 273, 63, 7, 784, 420, 84, 8, 1296, 612, 108, 9, 2025, 855, 135, 10, 3025, 1155, 165, 11, 4356, 1518, 198, 12, 6084, 1950, 234, 13, 8281, 2457, 273, 14, 11025, 3045, 315, 15, 14400, 3720, 360, 16
Offset: 1

Views

Author

Derek Orr, Jan 15 2015

Keywords

Comments

A240970 solves the Diophantine equation: k^3 + (k+1)^3 + ... + (k+n-1)^3 = y^3. This array gives the coefficients of the left hand side for specified n.

Examples

			Array starts:
n = 1:   0,   0,  0, 1;
n = 2:   1,   3,  3, 2;
n = 3:   9,  15,  9, 3;
n = 4:  36,  42, 18, 4;
n = 5: 100,  90, 30, 5;
n = 6: 225, 165, 45, 6;
n = 7: 441, 273, 63, 7;
n = 8: 784, 420, 84, 8;
...
		

Crossrefs

Programs

  • PARI
    for(n=1,50,for(k=0,3,print1(polcoeff(sum(i=1,n,(x+i-1)^3),k),", ")))
    
  • PARI
    concat([0,0,0], Vec(x^4*(x^12-3*x^11+3*x^10-x^9-3*x^8+6*x^7-4*x^5+3*x^4-3*x^3-3*x^2-x-1) / ((x-1)^5*(x+1)^5*(x^2+1)^5) + O(x^100))) \\ Colin Barker, Jun 02 2015

Formula

a(4*k+1) = A000537(k), for k >= 0.
a(4*k+2) = A059270(k), for k >= 0.
a(4*k+3) = A045943(k), for k >= 0.
a(4*k) = k, for k >= 1.
a(n) = ((2*n^4+40*n^3+188*n^2-24*n-558-(2*n^4-24*n^3+188*n^2-792*n-558)*(-1)^n+(2*n^4-20*n^3-130*n^2+772*n+377)*(-1)^((2*n-1+(-1)^n)/4)-(2*n^4+40*n^3-196*n^2-280*n+594)*(-1)^((6*n-1+(-1)^n)/4)-(4*n^3+66*n^2-228*n-217)*(-1)^((10*n-1+(-1)^n)/4)))/8192. - Luce ETIENNE, May 22 2015
G.f.: x^4*(x^12-3*x^11+3*x^10-x^9-3*x^8+6*x^7-4*x^5+3*x^4-3*x^3-3*x^2-x-1) / ((x-1)^5*(x+1)^5*(x^2+1)^5). - Colin Barker, Jun 02 2015