A250328
Denominator of the harmonic mean of the first n pentagonal numbers.
Original entry on oeis.org
1, 3, 77, 877, 6271, 36049, 36423, 422137, 49691099, 1448086909, 11631128477, 2334008785, 44471893747, 1827784004699, 832564679309, 39202882860913, 196334425398149, 3473612060358899, 3478128507653999, 205449856947685261, 303604578504856471
Offset: 1
a(3) = 77 because the pentagonal numbers A000326(n), for n = 1,2,3 are 1, 5, 12 and 3/(1/1+1/5+1/12) = 180/77.
-
With[{s = Array[PolygonalNumber[5, #] &, 21]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* Michael De Vlieger, Nov 02 2017 *)
-
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, (3*i^2-i)/2)))); s
A294513
Denominators of the partial sums of the reciprocals of twice the pentagonal numbers.
Original entry on oeis.org
2, 5, 120, 1320, 9240, 52360, 52360, 602140, 70450380, 2043061020, 16344488160, 3268897632, 62109055008, 2546471255328, 1157486934240, 54401885909280, 272009429546400, 4805499921986400, 4805499921986400, 283524495397197600, 418536159872053600
Offset: 0
The rationals V(3,2;n), n >= 0, begin: 1/2, 3/5, 77/120, 877/1320, 6271/9240, 36049/52360, 36423/52360, 422137/602140, 49691099/70450380, 1448086909/2043061020, ...
V(3,2;10^4) = 0.7409854223(Maple, 10 digits) to be compared with 0.7410187513 from V(3,2) given in A294514.
Conjecture tests: a(0) = 2 = A250327(1)/1, 2* a(1) = 5 = 2*A250327(2)/2 = A250327(2), a(2) = 120 = 2*A250327(2)/3 = 2*180/3, ...
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193 (with v_m(r) = ((m-r)/m)*V(m,r)).
-
Denominator@ Accumulate@ Array[1/(2 PolygonalNumber[5, #]) &, 21] (* Michael De Vlieger, Nov 02 2017 *)
Showing 1-2 of 2 results.
Comments