cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A250361 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 3 times.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 64, 81, 32, 7, 36, 125, 255, 243, 64, 8, 49, 216, 623, 1016, 729, 128, 9, 64, 343, 1293, 3094, 4048, 2187, 256, 10, 81, 512, 2397, 7712, 15365, 16128, 6561, 512, 11, 100, 729, 4091, 16700, 45866, 76300, 64257, 19683, 1024, 12
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Table starts
....2.....3.......4.......5........6.........7..........8..........9.........10
....4.....9......16......25.......36........49.........64.........81........100
....8....27......64.....125......216.......343........512........729.......1000
...16....81.....255.....623.....1293......2397.......4091.......6555.......9993
...32...243....1016....3094.....7712.....16700......32608......58826......99704
...64...729....4048...15365....45866....115963.....259106.....526505.....992530
..128..2187...16128...76300...272760....803382....2052904....4698744....9854280
..256..6561...64257..378880..1621963...5565230...16234706...41828450...97581710
..512.19683..256012.1881364..9644496..38548644..128373416..371780050..964209084
.1024.59049.1020000.9342081.57346376.266998350.1015004124.3304106808.9514922752

Examples

			Some solutions for n=6 k=4
..3....2....0....0....2....1....2....1....2....2....3....0....3....3....0....2
..2....3....1....4....4....4....3....3....1....3....2....3....1....3....4....4
..4....5....5....6....6....6....3....4....2....4....3....4....3....3....2....3
..3....3....4....3....5....6....7....4....5....3....6....7....4....5....6....7
..7....8....7....6....6....6....5....7....5....4....5....5....5....6....5....8
..5....7....9....9....9....9....8....5....9....5....9....7....7....6....9....5
		

Crossrefs

Column 1 is A000079
Column 2 is A000244
Column 3 is A206450
Row 1 is A000027(n+1)
Row 2 is A000290(n+1)
Row 3 is A000578(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1)
k=3: a(n) = 4*a(n-1) -a(n-4)
k=4: a(n) = 5*a(n-1) -2*a(n-4) -11*a(n-5) +a(n-8)
k=5: [order 13]
k=6: [order 25]
k=7: [order 56]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n + 3 for n>1
n=5: a(n) = n^5 + 5*n^4 + 10*n^3 + 5*n^2 + 17*n + 2 for n>2
n=6: a(n) = n^6 + 6*n^5 + 15*n^4 + 5*n^3 + 57*n^2 + 13*n + 1 for n>3
n=7: a(n) = n^7 + 7*n^6 + 21*n^5 + 147*n^3 + 49*n^2 + 7*n for n>4

A250346 Number of length n arrays x(i), i=1..n with x(i) in i..i+3 and no value appearing more than 2 times.

Original entry on oeis.org

4, 16, 62, 235, 888, 3349, 12620, 47545, 179104, 674666, 2541362, 9572864, 36059224, 135828387, 511640114, 1927252354, 7259597884, 27345542237, 103005522894, 388002462425, 1461532415920, 5505318159061, 20737499694808, 78114267177504
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Examples

			Some solutions for n=6:
..3....1....1....1....3....1....1....0....3....2....1....2....0....1....0....0
..2....2....3....4....2....1....4....4....4....2....3....4....2....2....3....1
..5....4....2....2....3....4....2....3....2....4....3....5....2....2....4....2
..4....5....3....4....6....6....6....3....6....5....4....5....6....3....3....4
..5....4....4....7....4....5....5....5....5....4....6....7....7....5....7....5
..6....5....5....5....6....8....5....5....5....5....7....7....6....6....8....5
		

Crossrefs

Column 3 of A250351.

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-3) - 5*a(n-4) + a(n-6).
Empirical g.f.: x*(4 - 2*x^2 - 5*x^3 + x^5) / (1 - 4*x + 2*x^3 + 5*x^4 - x^6). - Colin Barker, Nov 12 2018

A250347 Number of length n arrays x(i), i=1..n with x(i) in i..i+4 and no value appearing more than 2 times.

Original entry on oeis.org

5, 25, 122, 581, 2724, 12734, 59406, 276816, 1289208, 6002949, 27948445, 130114896, 605739129, 2819935996, 13127753699, 61113960653, 284504996836, 1324460800690, 6165782447251, 28703656674418, 133624541803551, 622064214270768
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Column 4 of A250351

Examples

			Some solutions for n=6
..2....0....4....4....3....0....3....4....4....2....2....3....1....0....4....1
..4....4....2....3....1....5....2....3....3....1....2....1....5....5....2....2
..5....3....3....3....5....2....2....4....5....5....3....3....5....2....5....5
..4....7....3....4....4....7....3....7....3....4....3....6....4....6....6....6
..6....7....6....6....7....8....7....8....4....6....6....8....4....7....8....7
..7....9....7....6....9....7....9....9....5....6....7....8....9....9....5....9
		

Formula

Empirical: a(n) = 5*a(n-1) -4*a(n-3) -9*a(n-4) -36*a(n-5) +7*a(n-6) +23*a(n-7) +13*a(n-8) +2*a(n-9) -5*a(n-10) +a(n-12)

A250348 Number of length n arrays x(i), i=1..n with x(i) in i..i+5 and no value appearing more than 2 times.

Original entry on oeis.org

6, 36, 212, 1221, 6900, 38543, 214716, 1193739, 6628042, 36773706, 203951790, 1130937489, 6270501936, 34764775155, 192735759120, 1068507612315, 5923642360728, 32839591629254, 182056176609954, 1009281733768068
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Column 5 of A250351

Examples

			Some solutions for n=6
..5....3....5....3....1....2....0....0....5....4....4....0....0....5....0....0
..6....1....2....5....5....4....5....6....1....2....6....2....4....1....4....6
..2....7....3....2....3....2....4....4....3....4....5....7....3....3....6....6
..7....7....4....6....8....7....4....5....3....5....8....8....4....7....3....7
..9....9....7....7....6....4....9....5....7....7....8....7....7....5....4....9
..9...10....8....5....5....7....5....7...10...10...10....9....9....7....5....7
		

Formula

Empirical: a(n) = 6*a(n-1) -8*a(n-3) -12*a(n-4) -66*a(n-5) -332*a(n-6) +132*a(n-7) +447*a(n-8) +294*a(n-9) +630*a(n-10) +396*a(n-11) -484*a(n-12) -222*a(n-13) +192*a(n-14) -188*a(n-15) -144*a(n-16) +114*a(n-17) +50*a(n-18) -12*a(n-19) +21*a(n-20) +16*a(n-21) -a(n-24)

A250349 Number of length n arrays x(i), i=1..n with x(i) in i..i+6 and no value appearing more than 2 times.

Original entry on oeis.org

7, 49, 338, 2287, 15186, 99344, 644040, 4164930, 26882466, 173276640, 1115910270, 7182799173, 46220503936, 297376327082, 1913081363032, 12306454081360, 79161863609011, 509201240096045, 3275346169991511, 21067913854706817
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Column 6 of A250351

Examples

			Some solutions for n=6
..1....2....2....1....0....1....4....2....3....4....3....1....2....2....0....4
..4....3....4....1....3....1....5....7....2....7....5....3....2....2....6....7
..8....3....7....3....5....5....2....4....5....3....6....4....7....4....2....3
..7....9....7....8....5....7....9....6....9....4....7....5....5....4....6....9
.10....7....6....4...10....9...10....4....6....8...10....9....8....6....7....6
..8....8...10....5....6....9....5...11....6....9....8....8....5....8....8....9
		

Formula

Empirical: a(n) = 7*a(n-1) -12*a(n-3) -32*a(n-4) -101*a(n-5) -623*a(n-6) -3703*a(n-7) +2630*a(n-8) +10358*a(n-9) +15805*a(n-10) +19448*a(n-11) +41930*a(n-12) +17560*a(n-13) -133023*a(n-14) -179079*a(n-15) -42337*a(n-16) +101951*a(n-17) -34974*a(n-18) -21497*a(n-19) +198775*a(n-20) +430980*a(n-21) +205427*a(n-22) -195761*a(n-23) -191518*a(n-24) -100666*a(n-25) -82593*a(n-26) -182721*a(n-27) -26175*a(n-28) +61736*a(n-29) +73291*a(n-30) +56839*a(n-31) -14702*a(n-32) -18860*a(n-33) -26635*a(n-34) -3079*a(n-35) +4310*a(n-36) +5890*a(n-37) -1330*a(n-38) -882*a(n-39) +37*a(n-40) -321*a(n-41) -191*a(n-42) +119*a(n-43) +25*a(n-44) -9*a(n-45) -a(n-46) -a(n-48)

A250350 Number of length n arrays x(i), i=1..n with x(i) in i..i+7 and no value appearing more than 2 times.

Original entry on oeis.org

8, 64, 506, 3935, 30072, 226247, 1681860, 12411486, 91384716, 671639928, 4929577344, 36146749703, 264885341958, 1940349607935, 14210290469006, 104055436365169, 761877093233402, 5577987879867728, 40836880075623272
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Column 7 of A250351

Examples

			Some solutions for n=5
..2....3....1....0....2....5....3....5....1....1....5....7....4....6....1....0
..8....8....4....2....8....5....6....7....3....2....5....5....7....4....5....2
..5....4....2....5....9....2....8....8....2....2....6....5....8....5....9....2
..9....8....8....3....7....8...10....4...10....4....8...10....6....3....6...10
.10....4....8....8....5....4....4....8....4....8....4...10....7....9....6...10
		

Formula

Empirical recurrence of order 96 (see link above)

A250352 Number of length 3 arrays x(i), i=1..3 with x(i) in i..i+n and no value appearing more than 2 times.

Original entry on oeis.org

8, 26, 62, 122, 212, 338, 506, 722, 992, 1322, 1718, 2186, 2732, 3362, 4082, 4898, 5816, 6842, 7982, 9242, 10628, 12146, 13802, 15602, 17552, 19658, 21926, 24362, 26972, 29762, 32738, 35906, 39272, 42842, 46622, 50618, 54836, 59282, 63962, 68882, 74048
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

a(n) = (n+1)^3 - (n-1), where (n+1)^3 is the number of ways of selecting a triple from n+1 numbers in these subintervals, and there are n-1 of these triples, (3,3,3) up to (n-2,n-2,n-2), where all values are the same, which are discarded. - R. J. Mathar, Oct 09 2020

Examples

			Some solutions for n=6:
  2  0  1  2  6  4  0  1  0  0  2  4  6  2  4  0
  4  4  7  7  2  4  2  3  1  6  1  2  3  6  5  5
  6  4  7  2  4  7  8  5  3  6  4  7  5  8  8  2
		

Crossrefs

Row 3 of A250351.

Formula

a(n) = n^3 + 3*n^2 + 2*n + 2 = 2*A158842(n+1).
From Colin Barker, Nov 12 2018: (Start)
G.f.: 2*x*(4 - 3*x + 3*x^2 - x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A250353 Number of length 4 arrays x(i), i=1..4 with x(i) in i..i+n and no value appearing more than 2 times.

Original entry on oeis.org

16, 75, 235, 581, 1221, 2287, 3935, 6345, 9721, 14291, 20307, 28045, 37805, 49911, 64711, 82577, 103905, 129115, 158651, 192981, 232597, 278015, 329775, 388441, 454601, 528867, 611875, 704285, 806781, 920071, 1044887, 1181985, 1332145
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

There are n+1 candidates for any of the 4 values in the 4-tuple. If there were no constraints, there were (n+1)^4 arrays. The constraint of not counting the quadruplets (4,4,4,4), (5,5,5,5), ..... (n+1,n+1,n+1,n+1) discards n-2 of the 4-tuples. [The case n=1 is special because there are not quadruplets]. Adding the constraint of not having triplets discards (3,3,3,*) and (*,n+2,n+2,n+2) where the star represents one of n+1 values; this is a total of 2*(n+1). The constraint of not having triplets also discards the (*,4,4,4), (4,*,4,4), (4,4,*,4), (4,4,4,*), (*,5,5,5),... (*,1+n,1+n,1+n),....(1+n,1+n,1+n,*) where the star represents one of n values (not n+1 here not to account for the quadruplets twice). There are binomial(4,1)*n*(n-2) of these triplets. The result is a(n) = (n+1)^4 -(n-2) -2*(n+1) -4*n*(n-2) = n^4+4*n^3+2*n^2+9*n+1. - R. J. Mathar, Oct 11 2020

Examples

			Some solutions for n=6:
..2....0....2....3....3....3....2....4....4....4....1....0....2....5....5....5
..6....2....7....1....7....4....2....4....3....4....4....6....1....3....1....4
..2....4....3....5....6....7....7....6....8....2....7....2....6....6....2....5
..3....7....7....8....6....4....6....7....8....7....8....6....9....4....5....3
		

Crossrefs

Row 4 of A250351.

Formula

a(n) = n^4 + 4*n^3 + 2*n^2 + 9*n + 1 for n>1.
From Colin Barker, Nov 13 2018: (Start)
G.f.: x*(16 - 5*x + 20*x^2 - 4*x^3 - 4*x^4 + x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)

A250354 Number of length 5 arrays x(i), i=1..5 with x(i) in i..i+n and no value appearing more than 2 times.

Original entry on oeis.org

32, 216, 888, 2724, 6900, 15186, 30072, 54888, 93924, 152550, 237336, 356172, 518388, 734874, 1018200, 1382736, 1844772, 2422638, 3136824, 4010100, 5067636, 6337122, 7848888, 9636024, 11734500, 14183286, 17024472, 20303388, 24068724
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Examples

			Some solutions for n=6:
..3....1....2....0....3....1....5....1....2....5....6....4....2....6....3....1
..4....5....1....4....6....1....1....2....2....2....1....1....7....1....1....7
..2....8....3....7....4....4....2....7....5....6....3....2....5....8....5....2
..3....8....8....8....8....4....4....7....5....3....8....9....3....5....6....7
.10....6....6....8....9....7....6....6....9....7....5....5....9....5....7....9
		

Crossrefs

Row 5 of A250351.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 25*n^2 + 5*n for n>2.
Conjectures from Colin Barker, Nov 13 2018: (Start)
G.f.: 2*x*(16 + 12*x + 36*x^2 - 2*x^3 + 18*x^4 - 33*x^5 + 16*x^6 - 3*x^7) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>8.
(End)

A250355 Number of length 6 arrays x(i), i=1..6 with x(i) in i..i+n and no value appearing more than 2 times.

Original entry on oeis.org

64, 622, 3349, 12734, 38543, 99344, 226247, 467642, 894599, 1606988, 2740319, 4473302, 7036127, 10719464, 15884183, 22971794, 32515607, 45152612, 61636079, 82848878, 109817519, 143726912, 185935847, 237993194, 301654823, 378901244
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Examples

			Some solutions for n=6:
..1....4....6....5....1....2....1....6....0....3....0....6....2....1....3....5
..1....3....6....2....7....2....5....6....5....5....4....5....3....1....3....1
..7....8....2....4....5....4....3....5....7....6....8....8....7....8....8....4
..3....8....5....7....5....7....8....7....4....8....9....3....8....5....5....3
..4....9....4....8....9...10....4...10....6....7...10....9....8....6....5....4
..9...11....7....5...10....9....8....9....6....7....8...10...10....9....9....6
		

Crossrefs

Row 6 of A250351.

Formula

Empirical: a(n) = n^6 + 6*n^5 - 5*n^4 + 55*n^3 + 25*n^2 - 61*n + 98 for n>3.
Conjectures from Colin Barker, Nov 13 2018: (Start)
G.f.: x*(64 + 174*x + 339*x^2 + 113*x^3 + 204*x^4 + 168*x^5 - 847*x^6 + 783*x^7 - 336*x^8 + 58*x^9) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>10.
(End)
Showing 1-10 of 11 results. Next