cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A250351 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 2 times.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 26, 16, 6, 25, 62, 75, 32, 7, 36, 122, 235, 216, 64, 8, 49, 212, 581, 888, 622, 128, 9, 64, 338, 1221, 2724, 3349, 1791, 256, 10, 81, 506, 2287, 6900, 12734, 12620, 5157, 512, 11, 100, 722, 3935, 15186, 38543, 59406, 47545, 14849, 1024, 12
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Table starts
....2.....3......4.......5........6.........7.........8..........9.........10
....4.....9.....16......25.......36........49........64.........81........100
....8....26.....62.....122......212.......338.......506........722........992
...16....75....235.....581.....1221......2287......3935.......6345.......9721
...32...216....888....2724.....6900.....15186.....30072......54888......93924
...64...622...3349...12734....38543.....99344....226247.....467642.....894599
..128..1791..12620...59406...214716....644040...1681860....3932472....8409252
..256..5157..47545..276816..1193739...4164930..12411486...32743710...78177402
..512.14849.179104.1289208..6628042..26882466..91384716..270990642..720784488
.1024.42756.674666.6002949.36773706.173276640.671639928.2238089580.6611373660

Examples

			Some solutions for n=6 k=4
..2....3....2....0....4....2....4....3....4....0....3....1....0....4....4....4
..3....1....2....1....3....2....1....4....1....4....5....4....5....4....5....1
..3....4....4....4....2....3....4....5....5....2....4....5....6....6....3....2
..5....7....7....4....5....6....5....3....4....5....4....6....5....6....6....5
..7....6....7....7....7....6....5....5....7....6....8....5....7....7....7....7
..9....6....9....9....6....5....9....8....7....6....5....6....8....5....7....9
		

Crossrefs

Column 1 is A000079
Column 2 is A076264(n)
Row 1 is A000027(n+1)
Row 2 is A000290(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 4*a(n-1) -2*a(n-3) -5*a(n-4) +a(n-6) = A250346(n)
k=4: [order 12] = A250347(n)
k=5: [order 24] = A250348(n)
k=6: [order 48] = A250349(n).
k=7: [order 96] = A250350(n).
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n + 2 = A250352(n).
n=4: a(n) = n^4 + 4*n^3 + 2*n^2 + 9*n + 1 for n>1 = A250353(n).
n=5: a(n) = n^5 + 5*n^4 + 25*n^2 + 5*n for n>2 = A250354(n).
n=6: a(n) = n^6 + 6*n^5 - 5*n^4 + 55*n^3 + 25*n^2 - 61*n + 98 for n>3 = A250355(n).
n=7: a(n) = n^7 + 7*n^6 - 14*n^5 + 105*n^4 + 105*n^3 - 532*n^2 + 1252*n - 744 for n>4 = A250356(n).
Showing 1-1 of 1 results.