A250396 a(n) is the smallest prime greater than 2^n such that 2 is a primitive root modulo a(n).
3, 3, 5, 11, 19, 37, 67, 131, 269, 523, 1061, 2053, 4099, 8219, 16421, 32771, 65539, 131213, 262147, 524309, 1048589, 2097211, 4194371, 8388619, 16777259, 33554467, 67108933, 134217773, 268435459, 536871019, 1073741827, 2147483659, 4294967357, 8589934621, 17179869269, 34359738421, 68719476851, 137438953741
Offset: 0
Keywords
References
- Henri Cohen, A Course in Computational Algebraic Number Theory, Springer Verlag, (1993)
Links
- Amiram Eldar, Table of n, a(n) for n = 0..300
- Joerg Arndt, Matters Computational; Ideas, Algorithms, Source Code, (ยง1.5.1, p.13).
Crossrefs
Cf. A104080 (smallest prime >= 2^n).
Programs
-
Mathematica
With[{n = 20}, Module[{p = NextPrime[2^n]}, While[FreeQ[PrimitiveRootList[p], 2], p = NextPrime[p]]; p]]
-
PARI
a(n)=forprime(p=2^n+1,,if(znorder(Mod(2,p))==p-1,return(p))); \\ Joerg Arndt, Nov 21 2014