cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Morgan L. Owens

Morgan L. Owens's wiki page.

Morgan L. Owens has authored 7 sequences.

A272627 Numbers n = pq where p, q are primes congruent to 3 and 7 mod 8, respectively.

Original entry on oeis.org

21, 69, 77, 93, 133, 141, 213, 237, 253, 301, 309, 341, 381, 413, 437, 453, 469, 501, 517, 573, 581, 589, 597, 669, 717, 749, 781, 789, 813, 869, 893, 917, 933, 973, 989, 1077, 1101, 1133, 1141, 1149, 1253, 1293, 1317, 1333, 1349, 1357, 1389, 1397, 1437, 1461
Offset: 1

Author

Morgan L. Owens, May 03 2016

Keywords

Comments

Candidate moduli for Rabin cryptosystem using Williams padding to ensure sufficient redundancy that the decryption is unique.

References

  • Steven D. Galbraith, Mathematics of Public Key Cryptography, Cambridge University Press, 2012, page 493.

Crossrefs

Cf. A016105.

Programs

  • Mathematica
    With[{upto = 1000},
    With[{primes = Prime@Range@PrimePi@NextPrime[upto/3]},
      With[{p = Pick[primes, Mod[primes, 8], 3], q = Pick[primes, Mod[primes, 8], 7]},
       Select[Union[Flatten@Outer[Times, p, q]], # <= upto &]] ]] (* after Harvey P. Dale at A016105 *)
  • PARI
    ok(n)={n%8==5 && bigomega(n)==2 && factor(n)[1,1] % 4 == 3} \\ Andrew Howroyd, Dec 23 2019

Extensions

Terms a(36) and beyond from Andrew Howroyd, Dec 23 2019

A250397 Differences between A250396 and A104080.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 12, 2, 30, 0, 0, 10, 10, 0, 2, 112, 0, 0, 6, 42, 52, 2, 0, 0, 54, 16, 0, 96, 0, 0, 46, 12, 60, 0, 84, 260, 6, 22, 126, 0, 60, 112, 14, 16, 124, 136, 40, 0, 150
Offset: 1

Author

Morgan L. Owens, Nov 21 2014

Keywords

Crossrefs

A250396 a(n) is the smallest prime greater than 2^n such that 2 is a primitive root modulo a(n).

Original entry on oeis.org

3, 3, 5, 11, 19, 37, 67, 131, 269, 523, 1061, 2053, 4099, 8219, 16421, 32771, 65539, 131213, 262147, 524309, 1048589, 2097211, 4194371, 8388619, 16777259, 33554467, 67108933, 134217773, 268435459, 536871019, 1073741827, 2147483659, 4294967357, 8589934621, 17179869269, 34359738421, 68719476851, 137438953741
Offset: 0

Author

Morgan L. Owens, Nov 21 2014

Keywords

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer Verlag, (1993)

Crossrefs

Cf. A104080 (smallest prime >= 2^n).

Programs

  • Mathematica
    With[{n = 20},
    Module[{p = NextPrime[2^n]},
      While[FreeQ[PrimitiveRootList[p], 2], p = NextPrime[p]]; p]]
  • PARI
    a(n)=forprime(p=2^n+1,,if(znorder(Mod(2,p))==p-1,return(p))); \\ Joerg Arndt, Nov 21 2014

A247209 Number of terms in generalized Swinnerton-Dyer polynomials.

Original entry on oeis.org

1, 2, 6, 35, 495, 20349, 2760681, 1329890705, 2353351951665, 15481400876017505, 379554034822178909121, 34676179189150610052785025, 11806724418359403847522843860225, 14998128029851443976142151169687652865, 71221988684076361563783957084457295633613825
Offset: 0

Author

Morgan L. Owens, Nov 25 2014

Keywords

Comments

If the sequence of primes used in the construction of Swinnerton-Dyer polynomials is replaced by the generic sequence a_1, a_2, ..., a_n, this sequence gives the number of terms in the resulting multivariate polynomial (treating the a_n as variables).
a(n-1) is the number of monomials obtained when multiplying all the possible cases Sum_{k=1..n} e_k*sqrt(x_k) where e_1 is 1 and all other e_i are +1 or -1; so that 1/(Sum_{k=1..n} sqrt(x_k)) is transformed into a fraction whose denominator has no radicals. See the French link. - Michel Marcus, Jun 12 2022

Examples

			a(3) = 35. For the three numbers a, b, c, the general Swinnerton-Dyer polynomial is
(sqrt(a)+sqrt(b)+sqrt(c)-z)(-sqrt(a)+sqrt(b)+sqrt(c)-z)(sqrt(a)-sqrt(b)+sqrt(c)-z)(-sqrt(a)-sqrt(b)+sqrt(c)-z)(sqrt(a)+sqrt(b)-sqrt(c)-z)(-sqrt(a)+sqrt(b)-sqrt(c)-z)(sqrt(a)-sqrt(b)-sqrt(c)-z)(-sqrt(a)-sqrt(b)-sqrt(c)-z)
which expands to
a^4-4a^3b+6a^2b^2-4ab^3+b^4-4a^3c+4a^2bc+4ab^2c-4b^3c+6a^2c^2+4abc^2+6b^2c^2-4ac^3-4bc^3+c^4- 4a^3z^2+4a^2bz^2+4ab^2z^2-4b^3z^2+4a^2cz^2-40abcz^2+ 4b^2cz^2+4ac^2z^2+4bc^2z^2-4c^3z^2+6a^2z^4+4abz^4+ 6b^2z^4+4acz^4+4bcz^4+6c^2z^4-4az^6-4bz^6-4cz^6+z^8
with 35 terms.
		

Crossrefs

Cf. A153731.

Programs

  • Maple
    a:= n-> (t-> binomial(t+n, t))(2^(n-1)):
    seq(a(n), n=0..14);  # Alois P. Heinz, Nov 28 2024
  • Mathematica
    a[n_]:= Module[{a,x}, Length@Fold[Expand[(#1 /. x -> x + #2) (#1 /. x -> x - #2)] &, x, Sqrt[a /@ Range[n]]]]; a[0] = 1; Array[a, 5, 0] (* or *)
    a[n_]:= Binomial[2^(n - 1) + n, 2^(n - 1)]; Array[a, 10, 0]

Extensions

a(0) = 1 prepended by Michel Marcus, Jun 12 2022

A247146 As a binary numeral, the bit 2^(m-1) of a(n) is 1 iff m is a proper divisor of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 11, 5, 19, 1, 47, 1, 67, 21, 139, 1, 295, 1, 539, 69, 1027, 1, 2223, 17, 4099, 261, 8267, 1, 16951, 1, 32907, 1029, 65539, 81, 133423, 1, 262147, 4101, 524955, 1, 1056871, 1, 2098187, 16661, 4194307, 1, 8423599, 65, 16777747, 65541
Offset: 1

Author

Morgan L. Owens, Nov 21 2014

Keywords

Comments

a(n)==1 iff n is prime.
Apparently Moebius transform of A178472.
For n>1, the binary representation of a(n) is given by row (n-1) of A077049 (when read as a triangular array). - Tom Edgar, Nov 28 2014

Crossrefs

Programs

  • Mathematica
    With[{n=Range[100]},(1/2) ((Total/@(2^Divisors[n])) - 2^n)]
  • PARI
    a(n) = sumdiv(n, k, 2^(k-1)) - 2^(n-1); \\ Michel Marcus, Nov 25 2014
    
  • Python
    from sympy import divisors
    def A247146(n): return sum(1<Chai Wah Wu, Jul 15 2022

Formula

a(n) = A034729(n) - 2^(n-1). - Michel Marcus, Nov 22 2014

A247123 Palindromes obtained after one iteration of Reverse and Add applied to the terms of A015976.

Original entry on oeis.org

2, 4, 6, 8, 11, 22, 33, 44, 55, 66, 77, 88, 99, 22, 33, 44, 55, 66, 77, 88, 99, 121, 33, 44, 55, 66, 77, 88, 99, 121, 44, 55, 66, 77, 88, 99, 121, 55, 66, 77, 88, 99, 121, 66, 77, 88, 99, 121, 77
Offset: 2

Author

Morgan L. Owens, Nov 21 2014

Keywords

Crossrefs

Cf. A015976 (One iteration of Reverse and Add is needed to reach a palindrome).

Programs

  • Mathematica
    Select[(FromDigits[#] + FromDigits[Reverse[#]]) & /@ IntegerDigits[Range[1000]], IntegerDigits[#] == Reverse[IntegerDigits[#]] &]

A247110 n + reversal of digits of n, when n is not palindromic.

Original entry on oeis.org

11, 33, 44, 55, 66, 77, 88, 99, 110, 22, 33, 55, 66, 77, 88, 99, 110, 121, 33, 44, 55, 77, 88, 99, 110, 121, 132, 44, 55, 66, 77, 99, 110, 121, 132, 143, 55, 66, 77, 88, 99, 121, 132, 143, 154, 66, 77, 88, 99, 110, 121, 143, 154, 165, 77, 88, 99, 110, 121, 132, 143, 165, 176, 88, 99, 110, 121, 132, 143, 154, 165, 187, 99, 110, 121
Offset: 10

Author

Morgan L. Owens, Nov 21 2014

Keywords

Crossrefs

Cf. A056964 (n + reversal of digits of n)

Programs

  • Mathematica
    With[{n=50}, (FromDigits[#] + FromDigits[Reverse[#]]) & /@ Select[IntegerDigits[Range[n]], # != Reverse[#] &]]
    Table[If[n==IntegerReverse[n],Nothing,n+IntegerReverse[n]],{n,100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 29 2016 *)