A272627 Numbers n = pq where p, q are primes congruent to 3 and 7 mod 8, respectively.
21, 69, 77, 93, 133, 141, 213, 237, 253, 301, 309, 341, 381, 413, 437, 453, 469, 501, 517, 573, 581, 589, 597, 669, 717, 749, 781, 789, 813, 869, 893, 917, 933, 973, 989, 1077, 1101, 1133, 1141, 1149, 1253, 1293, 1317, 1333, 1349, 1357, 1389, 1397, 1437, 1461
Offset: 1
Keywords
References
- Steven D. Galbraith, Mathematics of Public Key Cryptography, Cambridge University Press, 2012, page 493.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- H. C. Williams, A Modification of the RSA public encryption procedure, IEEE Trans. Inf. Theory 26(6) (1980), 726-729.
Crossrefs
Cf. A016105.
Programs
-
Mathematica
With[{upto = 1000}, With[{primes = Prime@Range@PrimePi@NextPrime[upto/3]}, With[{p = Pick[primes, Mod[primes, 8], 3], q = Pick[primes, Mod[primes, 8], 7]}, Select[Union[Flatten@Outer[Times, p, q]], # <= upto &]] ]] (* after Harvey P. Dale at A016105 *)
-
PARI
ok(n)={n%8==5 && bigomega(n)==2 && factor(n)[1,1] % 4 == 3} \\ Andrew Howroyd, Dec 23 2019
Extensions
Terms a(36) and beyond from Andrew Howroyd, Dec 23 2019
Comments